Return to search

Verification of communicating recursive programs via split-width

This thesis investigates automata-theoretic techniques for the verification of physically distributed machines communicating via unbounded reliable channels. Each of these machines may run several recursive programs (multi-threading). A recursive program may also use several unbounded stack and queue data-structures for its local-computation needs. Such real-world systems are so powerful that all verification problems become undecidable. We introduce and study a new parameter called split-width for the under-approximate analysis of such systems. Split-width is the minimum number of splits required in the behaviour graphs to obtain disjoint parts which can be reasoned about independently. Thus it provides a divide-and-conquer approach for their analysis. With the parameter split-width, we obtain optimal decision procedures for various verification problems on these systems like reachability, inclusion, etc. and also for satisfiability and model checking against various logical formalisms such as monadic second-order logic, propositional dynamic logic and temporal logics. It is shown that behaviours of a system have bounded split-width if and only if they have bounded clique-width. Thus, by Courcelle's results on uniformly bounded-degree graphs, split-width is not only sufficient but also necessary to get decidability for MSO satisfiability checking. We then study the feasibility of distributed controllers for our generic distributed systems. We propose several controllers, some finite state and some deterministic, which ensure that the behaviours of the system have bounded split-width. Such a distributedly controlled system yields decidability for the various verification problems by inheriting the optimal decision procedures for split-width. These also extend or complement many known decidable subclasses of systems studied previously.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01015561
Date28 January 2014
CreatorsCyriac, Aiswarya, Cyriac, Aiswarya
PublisherÉcole normale supérieure de Cachan - ENS Cachan
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.002 seconds