Return to search

Pull-out of hooked end steel fibres : experimental and numerical study

Abstract
The reinforcement of concrete with steel fibres changes the failure of the composite material from catastrophic brittle failure to pseudo-ductile behaviour as a result of crack-bridging by the fibres, and the additional work which is absorbed by fibre pull-out. A good understanding of the properties of the fibre-reinforced concrete depends on an understanding of the fibre pull-out process. The main aim of the current study is to investigate, both experimentally and numerically, the pull-out behaviour of a single hooked end steel fibre from epoxy matrix, where epoxy was chosen to replace concrete in order to enable visualisation of the pull-out process. The experimental and numerical results both contribute to the development of a physical understanding of the mechanism of pull-out.
Experimental studies included the evaluation of the mechanical properties of hooked end steel fibre and epoxy matrix by means of tensile tests, the manufacturing of pull-out specimens consisting of a single hooked end steel fibre embedded in epoxy matrix, and the experimental characterisation of the fibre pull-out. The significant features (peaks and minima) of the load vs. displacement graph were correlated to stills taken from a video of the pull-out process, in which the plastic deformation of the fibre is evident. Small deformations (spalling) were also observed in the matrix. A model is proposed for the mechanisms which interact during the pull-out process. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Mechanical and Aeronautical Engineering / unrestricted

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/40820
Date January 2013
CreatorsMpanga-A-Kangaj, Christian
ContributorsInglis, Helen M., christiankangaj@gmail.com, Kok, Schalk
PublisherUniversity of Pretoria
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
Rights© 2013 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.

Page generated in 0.0035 seconds