Return to search

Comparison of Logistic Regression and an Explained Random Forest in the Domain of Creditworthiness Assessment

As the use of AI in society is developing, the requirement of explainable algorithms has increased. A challenge with many modern machine learning algorithms is that they, due to their often complex structures, lack the ability to produce human-interpretable explanations. Research within explainable AI has resulted in methods that can be applied on top of non- interpretable models to motivate their decision bases. The aim of this thesis is to compare an unexplained machine learning model used in combination with an explanatory method, and a model that is explainable through its inherent structure. Random forest was the unexplained model in question and the explanatory method was SHAP. The explainable model was logistic regression, which is explanatory through its feature weights. The comparison was conducted within the area of creditworthiness and was based on predictive performance and explainability. Furthermore, the thesis intends to use these models to investigate what characterizes loan applicants who are likely to default. The comparison showed that no model performed significantly better than the other in terms of predictive performance. Characteristics of bad loan applicants differed between the two algorithms. Three important aspects were the applicant’s age, where they lived and whether they had a residential phone. Regarding explainability, several advantages with SHAP were observed. With SHAP, explanations on both a local and a global level can be produced. Also, SHAP offers a way to take advantage of the high performance in many modern machine learning algorithms, and at the same time fulfil today’s increased requirement of transparency. / I takt med att AI används allt oftare för att fatta beslut i samhället, har kravet på förklarbarhet ökat. En utmaning med flera moderna maskininlärningsmodeller är att de, på grund av sina komplexa strukturer, sällan ger tillgång till mänskligt förståeliga motiveringar. Forskning inom förklarar AI har lett fram till metoder som kan appliceras ovanpå icke- förklarbara modeller för att tolka deras beslutsgrunder. Det här arbetet syftar till att jämföra en icke- förklarbar maskininlärningsmodell i kombination med en förklaringsmetod, och en modell som är förklarbar genom sin struktur. Den icke- förklarbara modellen var random forest och förklaringsmetoden som användes var SHAP. Den förklarbara modellen var logistisk regression, som är förklarande genom sina vikter. Jämförelsen utfördes inom området kreditvärdighet och grundades i prediktiv prestanda och förklarbarhet. Vidare användes dessa modeller för att undersöka vilka egenskaper som var kännetecknande för låntagare som inte förväntades kunna betala tillbaka sitt lån. Jämförelsen visade att ingen av de båda metoderna presterande signifikant mycket bättre än den andra sett till prediktiv prestanda. Kännetecknande särdrag för dåliga låntagare skiljde sig åt mellan metoderna. Tre viktiga aspekter var låntagarens °ålder, vart denna bodde och huruvida personen ägde en hemtelefon. Gällande förklarbarheten framträdde flera fördelar med SHAP, däribland möjligheten att kunna producera både lokala och globala förklaringar. Vidare konstaterades att SHAP gör det möjligt att dra fördel av den höga prestandan som många moderna maskininlärningsmetoder uppvisar och samtidigt uppfylla dagens ökade krav på transparens.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-301907
Date January 2021
CreatorsAnkaräng, Marcus, Kristiansson, Jakob
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:368

Page generated in 0.0033 seconds