De par l’augmentation de leur utilisation, la sécurisation du vol des drones devient de plus en plus importante. La commande tolérante aux fautes peut alors contribuer à l’obtention d’un niveau de sécurité acceptable. Le but de cette thèse est de développer une méthode de commande tolérante aux fautes basée sur deux types d’approches : l’approche Automatique qui utilise une représentation de systèmes à l’aide de modèles décrivant des évolutions continues et l’approche Intelligence Artificielle qui se base sur la représentation de systèmes à l’aide de modèles discrets ou logiques. Ainsi la première contribution de cette recherche est le développement d'une méthode générique de commande tolérante aux fautes utilisant les cadres de modélisation discret et continu. L’idée consiste à combiner une modélisation continue permettant d’estimer l’état et les paramètres de fautes et une modélisation discrète permettant de prendre une décision en ligne quant au contrôleur à utiliser. L’estimation continue permet d’avoir plus d’informations sur la faute qu’avec une modélisation discrète, alors que celle-ci prend en compte des probabilités de panne et des techniques d’optimisation qui sont plus adaptées à la tâche de décision. La seconde contribution concerne le développement et la validation d’une méthode permettant de détecter et de diagnostiquer la faute. Pour ses avantages, l’idée a été de développer un filtre de Kalman sensibles aux sauts de panne pour l’estimation de l’état et des paramètres de fautes. Pour la détection et le diagnostic de la panne, l’idée a été d’utiliser les données de l’estimation de façon probabiliste. Une fois la faute détectée et identifiée, le système de commande doit réagir pour pouvoir compenser cette faute. La troisième contribution porte donc sur l’amélioration du suivi de la trajectoire par reconfiguration du système de commande. L’objectif est de combiner les méthodes de commutation et d’adaptation, afin de limiter le nombre de contrôleurs en utilisant des contrôleurs adaptatifs pour les modes dégradés, tout en ayant des contrôleurs faciles à concevoir. Des techniques d’optimisation sont alors utilisées de façon à prendre une décision en ligne quant au choix du contrôleur. Finalement, la méthode développée doit être vérifiée avant de pouvoir être implémentée sur un drone. La dernière contribution est l’évaluation de la capacité de la méthode à suivre une trajectoire d’atterrissage en cas de pannes capteurs ou actionneurs grâce à un modèle de drone. / Major security risks appear with the increase of the number of UAV in the air space. Thus, UAV security is more and more important and Fault Tolerant Control (FTC) methods could support the achievement of acceptable security level. The aims of this research is to develop a FTC method which combines two approaches : Automatic Control approach which is based on model which have a continuous representation of the system and Artificial Intelligence approach which is based on discrete or logical model to represent the system. Thus, the first contribution of this thesis is the development of a generic fault tolerant control method which uses discrete and continuous frameworks. The idea was to combine a continuous framework to estimate the state and fault parameters and a discrete framework to take on line a decision about the controller. The continuous estimation provides more knowledge on the fault whereas a discrete model allows the use of different optimization tools which are more adapted to decision task. The second contribution is the development and the validation of a method for fault detection and diagnosis. For its potential, a Kalman filter is adapted in order to be sensitive to abrupt faults and used for state and fault parameters estimation. These estimates are then used in a probabilistic way to detect and identify the fault. Once the fault is detected, the control system should react to compensate the fault. Thus, the third contribution of this thesis is the improvement of the trajectory tracking by reconfiguration of the control system. The aim is to combine switching and adaptive methods in order to limit the number of controllers by using adaptive controllers for degraded modes while having convenient controllers. Optimization tools are then used to take the decision on the controller to use. Finally, the method has to be validated before being implemented on line. The last contribution is the evaluation of the ability of the method to follow its trajectory despite the apparition of actuator or sensor faults during a landing approach.
Identifer | oai:union.ndltd.org:theses.fr/2018ESAE0043 |
Date | 18 December 2018 |
Creators | Boche, Adèle |
Contributors | Toulouse, ISAE, Plinval, Henry de, Farges, Jean-Loup |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds