Return to search

CALIBRATION OF THE JOHNSON-COOK FAILURE PARAMETERS AS THE CHIP SEPARATION CRITERION IN THE MODELLING OF THE ORTHOGONAL METAL CUTTING PROCESS

The finite element analysis (FEA) is a numerical method widely used to predict the metal-cutting performance in both academic and industrial studies, avoiding the high expense and time consumption of experimental methods. The problem is how to calibrate reliable fracture-parameters as chip-separation criterion are implemented into FEA modelling. This thesis introduces a calibration method of the Johnson-Cook fracture parameters used in the orthogonal metal cutting modelling with a positive rake angle for AISI 1045 steel. These fracture parameters were obtained based on a set of quasi-static tensile tests, with smooth and pre-notched round bars at room temperature and elevated temperatures. The fracture parameters were validated by low- and high-strain rate simulations corresponding to tensile tests and orthogonal metal-cutting processes respectively in ABAQUS/Explicit. Compared to literature calibration methods, this method is simpler, less expensive but valid. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/19091
Date January 2016
CreatorsWang, Keyan
ContributorsNg, Eu-Gene, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0015 seconds