The objective of the research was to develop high quality GaN epitaxial growth on alternative substrates that could result in higher external quantum efficiency devices. Typical GaN growth on sapphire results in high defect materials, typically 10⁸⁻¹⁰cm⁻², due to a large difference in lattice mismatch and thermal expansion coefficient. Therefore, it is useful to study epitaxial growth on alternative substrates to sapphire such as ZnO which offers the possibility of lattice matched growth. High-quality metalorganic chemical vapor deposition (MOCVD) of GaN on ZnO substrate is hard to grow due to the thermal stability of ZnO, out-diffusion of Zn, and H₂back etching into the sample. Preliminary growths of GaN on bare ZnO substrates showed multiple cracks and peeling of the surface. A multi-buffer layer of LT-AlN/GaN was found to solve the cracking and peeling-off issues and demonstrated the first successful GaN growth on ZnO substrates. Good quality InGaN films were also grown showing indium compositions of 17-27% with no indium droplets or phase separation. ZnO was found to to sustain a higher strain state than sapphire, and thereby incorporating higher indium concentrations, as high as 43%, without phase separation, compared to the same growth on sapphire with only 32%. Si doping of InGaN layers, a known inducer for phase separation, did induce phase separation on sapphire growths, but not for growths on ZnO. This higher strain state for ZnO substrates was correlated to its perfect lattice match with InGaN at 18% indium concentration. Transmission electron microscopy results revealed reduction of threading dislocation and perfectly matched crystals at the GaN buffer/ZnO interface showing coherent growth of GaN on ZnO. However, Zn diffusion into the epilayer was an issue. Therefore, an atomic layer deposition of Al₂O₃was grown as a transition layer prior to GaN and InGaN growth by MOCVD. X-ray and PL showed distinct GaN peaks on Al₂O₃/ZnO layers demonstrating the first GaN films grown on Al₂O₃/ZnO. X-ray photoelectron spectroscopy showed a decrese in Zn diffusion into the epilayer, demonstrating that an ALD Al₂O₃layer was a promising transition layer for GaN growth on ZnO substrates by MOCVD.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/33840 |
Date | 09 January 2009 |
Creators | Li, Nola |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0024 seconds