In this work novel solid-state neutron detectors based on Gallium Nitride (GaN) have been produced and characterized. GaN is a radiation hard semiconductor which is commonly used in commercial optoelectronic devices. The important design consideration for producing GaN-based neutron detectors have been examined, and device simulations performed. Scintillators and p-i-n diode-type neutron detectors have been grown by metalorganic chemical vapor deposition (MOCVD) and characterized. GaN was found to be intrinsically neutron sensitive through the Nitrogen-14 (n, p) reaction. Neutron conversion layers which produce secondary ionizing radiation were also produced and evaluated. GaN scintillator response was found to scale highly linearly with nuclear reactor power, indicating that GaN-based detectors are suitable for use in the nuclear power industry.
This work is the first demonstration of using GaN for neutron detection. This is a novel application for a mature semiconductor material. The results presented here provide a proof-of-concept for solid-state GaN-based neutron detectors which offer many potential advantages over the current state-of-the-art, including lower cost, lower power operation, and mechanical robustness. At present Helium-3 proportional counters are the preferred technology for neutron detection, however this isotope is extremely rare, and there is a global shortage. Meanwhile demand for neutron detectors from the nuclear power, particle physics, and homeland security sectors requires development of novel neutron detectors which are which are functional, cost-effective, and deployable.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/44752 |
Date | 19 May 2011 |
Creators | Melton, Andrew Geier |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0118 seconds