In der Arbeit wird eine Methodik einer zusammenhängenden Analyse und modellhaften Beschreibung der Verkehrssicherheit in städtischen Hauptstraßennetzen am Beispiel der Stadt Dresden entwickelt. Die dabei gewonnenen Modelle dienen der Abschätzung von Erwartungswerten von Unfallhäufigkeiten mit und ohne Personenschaden unter Berücksichtigung der Verkehrsbeteiligungsart.
Die Grundlage bilden multivariate Regressionsmodelle auf Basis verallgemeinerter linearer Modelle (GLM). Die Verwendung verallgemeinerter Regressionsmodelle erlaubt eine Berücksichtigung von Verteilungen, die besser geeignet sind, den Unfallentstehungsprozess wiederzugeben, als die häufig verwendete Normalverteilung. Im konkreten Fall werden hierzu die Poisson-Verteilung sowie die negative Binomialverteilung verwendet.
Um Effekte im Hauptverkehrsstraßennetz möglichst trennscharf abbilden zu können, werden vier grundsätzliche Netzelemente differenziert und das Netz entsprechend zerlegt. Unterschieden werden neben Streckenabschnitten und Hauptverkehrsknotenpunkten auch Annäherungsbereiche und Anschlussknotenpunkte. Die Kollektive der Knotenpunkte werden ferner in signalisierte und nicht-signalisierte unterteilt. Es werden zunächst Modelle unterschiedlicher Unfallkollektive getrennt für alle Kollektive der vier Netzelemente berechnet. Anschließend werden verschiedene Vorgehensweisen für eine Zusammenfassung zu Netzmodellen entwickelt.
Neben der Verwendung verkehrstechnischer und infrastruktureller Größen als erklärende Variable werden in der Arbeit auch Kenngrößen zur Beschreibung der Umfeldnutzung ermittelt und im Rahmen der Regression einbezogen. Die Quantifizierung der Umfeldnutzung erfolgt mit Hilfe von Korrelations-, Kontingenz- und von Hauptkomponentenanalysen (PCA).
Im Ergebnis werden Modelle präsentiert, die eine multivariate Quantifizierung erwarteter Unfallhäufigkeiten in Hauptverkehrsstraßennetzen erlauben. Die vorgestellte Methodik bildet eine mögliche Grundlage für eine differenzierte Sicherheitsbewertung verkehrsplanerischer Variantenabschätzungen. / A methodology is developed in order to predict the number of accidents within an urban main road network. The analysis was carried out by surveying the road network of Dresden. The resulting models allow the calculation of individual expectancy values for accidents with and without injury involving different traffic modes.
The statistical modelling process is based on generalized linear models (GLM). These were chosen due to their ability to take into account certain non-normal distributions. In the specific case of accident counts, both the Poisson distribution and the negative binomial distribution are more suitable for reproducing the origination process than the normal distribution. Thus they were chosen as underlying distributions for the subsequent regressions.
In order to differentiate overlaying influences, the main road network is separated into four basic elements: major intersections, road sections, minor intersections and approaches. Furthermore the major and minor intersections are additionally subdivided into signalised and non-signalised intersections. Separate models are calculated for different accident collectives for the various types of elements. Afterwards several methodologies for calculating aggregated network models are developed and analysed.
Apart from traffic-related and infrastructural attributes, environmental parameters are derived taking into account the adjacent building structure as well as the surrounding land-use, and incorporated as explanatory variables within the regression. The environmental variables are derived from statistical analyses including correlation matrices, contingency tables and principal components analyses (PCA).
As a result, a set of models is introduced which allows a multivariate calculation of expected accident counts for urban main road networks. The methodology developed can serve as a basis for a differentiated safety assessment of varying scenarios within a traffic planning process.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27205 |
Date | 17 May 2013 |
Creators | Aurich, Allan |
Contributors | Maier, Reinhold, Friedrich, Markus, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.1431 seconds