Ces travaux s'articulent autour du calcul des solutions périodiques dans les systèmes dynamiques non linéaires, au moyen de méthodes numériques de continuation. La recherche de solutions périodiques se traduit par un problème avec conditions aux limites périodiques, pour lequel nous avons implémenté deux méthodes d'approximation : - Une méthode spectrale dans le domaine fréquentiel, l'équilibrage harmonique d'ordre élevé, qui repose sur une formulation quadratique des équations. Nous proposons en outre une extension de cette méthode aux cas de non-linéarités non rationnelles. - Une méthode pseudo-spectrale dans le domaine temporel, la collocation à l'aide fonctions polynômiales par morceaux. Ces méthodes transforment le problème continu en un système d'équations algébriques non linéaires, dont les solutions sont calculées par continuation à l'aide de la méthode asymptotique numérique. L'ensemble de ces outils, complétés d'une analyse linéaire de stabilité, sont intégrés au code de calcul MANLAB. Applications : Un modèle physique non-régulier de clarinette est étudié en détail : à partir de la branche de solutions statiques et ses bifurcations, on calcule les différentes branches de solutions périodiques, ainsi que leur stabilité et leurs bifurcations. Ce modèle est ensuite adapté au cas du saxophone, pour lequel on intègre une caractérisation acoustique expérimentale, afin de mieux tenir compte de la géométrie complexe de l'instrument. Enfin, nous étudions un modèle physique simplifié de violon, avec une non-régularité liée frottement de Coulomb. / Periodic solutions of nonlinear dynamical systems are the focus of this work. We compute periodic solutions through a BVP formulation, solved with two numerical methods: - a spectral method, in the frequency domain: the hogh-order Harmonic Balance Method, using a quadratic formulation of the original equations. We also propose an extension to nonrational nonlinearities. - a pseudo-spectral method, in the time domain : the arthogonal collocation at Gauss point, with piece-wise polynomial interpolation. Both methods lead to a system of nonlinear algebraic equations, and its solutions are computed by a continuation algorithm : the Asymptotic Numerical Method. These methods are embeded in the numerical package MANLAB, together with a linear stability analysis. Application We then apply these methods to physical models of several instruments : a clarinet, a saxophone, and a violin. The clarinet model contains a non-smooth contact between the reed and the mouthpiece. The study focuses on the evolution of frequency, loudness, and spectrum along the branch of periodic solutions when varying the mouth pressure. The saxophone model is very similar, but an experimental characterization of the bore is used in that case. Finally, the violin model with a non-smooth Coulomb contact law and a simplified resonator is studied, showing the variety of models that can be treated using this method.
Identifer | oai:union.ndltd.org:theses.fr/2012AIXM4769 |
Date | 10 January 2012 |
Creators | Karkar, Sami |
Contributors | Aix-Marseille, Cochelin, Bruno, Vergez, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds