Return to search

Investigation of high temperature stability of additive manufactured austenitic stainless steels for space applications

Additive manufacturing (AM) techniques are being studied for their application in the aerospace industry. Numerous benefits come from the already in shape final piece, which needs reduced amount of prime material for its production and can have its shape numerically optimized for weight reduction. Austenitic stainless steels (AuSS) are widely used in aerospace and their manufacturing through AM is a popular research topic in order to accelerate their effective incorporation in air-crafts and spaceships. The special microstructures of AM has been observed with characterization techniques. The present work studies the high temperature stability of three AuSS (316L, MOD-316 and 21-6-9) considering two approaches; surface corrosion and microstructure evolution. First, for high temperature corrosion, thermogravimetric analysis has been performed from 850°C to 1150°C. From the results, kinetic analysis were performed and the activation energy was extracted from Arrhenius fits. Two mechanism were found for alloy 316L (first 435.41 kJ/mol and second 593.24 kJ/mol) and MOD-316 (first 740.01 kJ/mol and second 495.58 kJ/mol). Further SEM observations on the scales have shown Ni diffusion through the chromia scale in MOD-316 alloy, which could explain the higher oxidation rates at 1150°C. Alloy 21-6-9 has the best passivation behaviour with an activation energy of 190.47 kJ/mol. Secondly, long heat treatment (HT) at 725°C in air atmosphere has been performed, for 24 and 240h. Samples were initially as-built or annealed (900°C for 1h), to compare the effect of the HT on the microstructure evolution and precipitates formation. LOM observation showed preferable nucleation in grain boundaries (GB), an increment of the number of precipitates and a growth towards elongated shapes following GB with increased time. It was also observed a reduction in precipitates number with the annealing HT for all the alloys. XRD, SEM and EDS analysis has been carried out to identify the structure and composition of the precipitates. Various chromium, tungsten, copper, molybdenum and niobium carbides and oxides have been found in MOD-316. Higher porosity is observed in 21-6-9, that presented mainly chromium oxides, carbides and nitrides in GB and surrounding the AM defects. / SeSSA

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-99004
Date January 2023
CreatorsAlonso Rancurel, Belén
PublisherLuleå tekniska universitet, Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0011 seconds