• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 5
  • 5
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Relationship of Microstructure to Fracture and Corrosion Behavior of a Directionally Solidified Superalloy

Trexler, Matthew David 18 December 2006 (has links)
SUMMARY GTD-111 DS is a directionally solidified superalloy currently used in turbine engines. To accurately predict the life of engine components it is essential to examine and characterize the microstructural evolution of the material and its effects on material properties. The as-cast microstructure of GTD-111 is highly inhomogeneous as a result of coring. The current post-casting heat treatments do not effectively eliminate the inhomogeneity. This inhomogeneity affects properties including tensile strength, fracture toughness, fracture path, and corrosion behavior, primarily in terms of the number of grains per specimen. The goal of this work was to link microstructural features to these properties. Quantitative fractography was used to determine that the path of cracks during failure of tensile specimens is influenced by the presence of carbides, which are located in the interdendritic regions of the material as dictated by segregation. The solvus temperature of the precipitate phase, Ni3(Al, Ti), was determined to be 1200C using traditional metallography, differential thermal analysis, and dilatometry. A heat-treatment was designed to homogenize the microstructure for tensile testing that isolates the carbide by dissolving all of the eutectic Ni3(Al, Ti) precipitate phase, which is also found in the interdendritic areas. High temperature oxidation/sulfidation tests were conducted to investigate the corrosion processes involved when GTD-111 DS is utilized in steam and gas combustion turbine engines. The kinetics of corrosion in both oxidizing and sulfidizing atmospheres were determined using thermogravimetric analysis. Additionally, metallography of these samples after TGA revealed a correlation between the presence of grain boundaries and sulfur attack, which led to catastrophic failure of the material under stress-free conditions in a sulfur bearing environment. In summary, this work correlates the inhomogeneous microstructure of GTD-111 DS to tensile fracture, and the corrosion process in turbine engines.
2

High temperature corrosion on heat exchanger material exposed to alkali salt deposits / Högtemperaturkorrosion på värmeväxlarmaterial vid exponering för alkalisalt

Persson, Kajsa January 2015 (has links)
Power generation through decentralized small scale CHP would facilitate the use of biomass as an energy source, with the externally fired gas turbine (EFGT) being a promising technology due to its high electrical efficiency. In an EFGT hot flue gases are heat-exchanged with an air cycle, driving the turbine. The operation requires higher flue gas temperatures than other technologies, for example steam turbines, to achieve optimal performance.  The operating conditions subjects the high temperature heat exchanger (HT-HE) to both physical and chemical stress, with the corrosion related issues yet to be solved. Problems concerning deposit formation and corrosion, on for example super heaters and heat exchangers, when firing biomass are important issues even in commercially available technologies, where the choice of fuel and fuel additives together with component design and choice of material plays important roles in order to minimize the problems. The significantly higher temperatures of the heat transferring surfaces for an EFGT entails combustion deposit related problems less studied. The evaluation of turbine control, deposit formation and corrosion as well as design of the HT-HE and system integration will enable the development of the EFGT technology for applications with small- and medium-size biomass combustion. In this work four potential HT-HE alloys of various grades have been evaluated with respect to corrosion resistance, when exposed to alkali salts and salt mixtures in the KCl-K2CO3-K2SO4 system. The exposures were done in a tube furnace during 24 h for each experiment at four temperature levels between 700–1000oC. Morphological and elemental analysis of the alloy surface and corrosion layers was performed with SEM-EDS. The presence of KCl in the salt caused the most severe corrosion attacks while the corrosion attacks of the pure sulfate and carbonate were more modest. Significant differences between the four materials were observed. X20 experienced severe corrosion, with corrosion scale formation in most cases. The KCl-containing salts caused 253MA to form corrosion scales at all temperatures, while the corrosion resistance to other salts was fairly good. Inconel 600 had the second best overall corrosion resistance. However, it should be pointed out that in some cases the alloy was surpassed by 253MA. Kanthal showed the best overall performance, with limited corrosion scale formation and surprisingly high corrosion resistance to the KCl-containing ternary salt mixture at 900°C and 1000°C.
3

Oxidation and corrosion fatigue aspects of cast exhaust manifolds

Ekström, Madeleine January 2015 (has links)
Emission regulations for heavy-duty diesel engines are becoming increasingly restrictive to limit the environmental impacts of exhaust gases and particles. Increasing the specific power output of diesel engines would improve fuel efficiency and greatly reduce emissions, but these changes could lead to increased exhaust gas temperature, increasing demands on the exhaust manifold material. This is currently the ferritic ductile cast iron alloy SiMo51, containing about 4 wt% Si and ~1 wt% Mo, which operates close to its fatigue and oxidation resistance limits at peak temperature (750C). To ensure high durability at higher temperatures, three different approaches to improving the life of exhaust manifolds were developed in this thesis. The first approach was to modify SiMo51 by adding different combinations of Cr and Ni to improve its high-temperature strength and oxidation resistance, or by applying a thermal barrier coating (TBC) to reduce the material temperature and thereby improve fatigue life. In the second approach, new materials for engine components, e.g. austenitic ductile iron and cast stainless steel, were investigated for their high-temperature fatigue and oxidation properties. In order to identify the most suitable alloys for this application, in the third the environmental effects of the corrosive diesel exhaust gas on the fatigue life of SiMo51 were investigated. The high-temperature oxidation resistance of SiMo51 at 700 and 800C in air was found to be improved by adding Cr, whereas Ni showed adverse effects. The effects of solid-solution hardening from Ni and precipitation hardening from Cr were low at 700C, with improvements only at lower temperatures. Applying a TBC system, providing thermal protection from a ceramic topcoat and oxidation protection from a metallic bond coat, resulted in only small reductions in material temperature, but according to finite element calculations still effectively improved the fatigue life of a turbo manifold. Possible alternative materials to SiMo51 identified were austenitic cast ductile iron Ni-resistant D5S and austenitic cast stainless steel HK30, which provided high durability of exhaust manifolds up to 800 and 900C, respectively. Corrosion fatigue testing of SiMo51 at 700C in diesel exhaust gas demonstrated that the corrosive gas reduced fatigue life by 30-50% compared with air and by 60-75% compared with an inert environment. The reduced fatigue life was associated with a mechanism whereby the crack tip oxidized, followed by crack growth. Thus another potential benefit of TBC systems is that the bond coat may reduce oxidation interactions and further improve fatigue life. These results can be used for selecting materials for exhaust applications. They also reveal many new research questions for future studies. Combining the different approaches of alloy modification, new material testing and improving the performance using coatings widened the scope of how component life in exhaust manifolds can be improved. Moreover, the findings on environmental interactions on SiMo51 fatigue provide a completely new understanding of these processes in ductile irons, important knowledge when designing components exposed to corrosive environments. The novel facility developed for high-temperature corrosion fatigue testing can be useful to other researchers working in this field. / <p>QC 20150507</p>
4

High Temperature Corrosion Of Steels Used In Petroleum Refinery Heaters

Sultan, Abdelrahman Saleh 01 July 2005 (has links) (PDF)
The oxidation of three different steels used in the construction of petroleum refineryheaters was investigated by using thermogravimetric analysis technique (TGA). C-5,P-11, and P-22 steel samples were tested in two different oxidizing environments / air and CO2+N2+H2O (that simulates the combustion products of natural gas) at two different temperatures / 450oC and 500oC. In air oxidation P-22 had the best oxidation resistance among the three steels at two temperatures. In CO2+N2+H2O environment,C-5 possessed better oxidation resistance than P-22 and P-11. Analyses of oxidation products by using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out to correlate TGA results to oxide composition and morphology. Lower oxidation rate of P-22 in air was explained with reference to the formation of Cr-O phase. Analytical rate equations showed that all the steels obeyed parabolic rate equation during oxidation and no transition was observed
5

Improved interconnect materials for next-generation Solid Oxide Fuel Cells

Collantes, Pablo January 2019 (has links)
Solid Oxide Fuel Cells (SOFC) are attractive candidates in the search for cleaner and energy efficient production due to their numerous advantages such as fuel flexibility, modularity and exceptional efficiencies when combined heat and power is harnessed. A key element in its design are the interconnects which are mainly manufactured from custom ferritic stainless steels to carry the electricity between two adjacent cells. However, the high operation temperatures increase the chromia scale thickness in those steels, which reduces their conductivity. At the same time, chromium (VI) volatilization due to the wet atmosphere poisons the electrodes and reduces the cell life. Therefore, the narrow of the selection of suitable materials and high production costs have hindered their commercialization. Recent advances in lower temperature SOFC operation have opened a window for new interconnect materials and innovative processes. A Ce/Co nanocoating can be applied in the readily available AISI 441 ferritic steel to form a protective spinel oxide layer that reduces the effect of both degradations in the interconnects. The coating is applied in a continuous roll-to-roll process and then the interconnect shape is pressed in the material, manufactured as Sanergy HT 441 by Sandvik. However, mechanical stresses cause microcracks that expose the substrate material, which can impact the oxidation behaviour negatively. Fortunately, pre-treatments can achieve the spinel to diffuse over short distances and combine with elements in the substrate, homogenizing the protective effect. This phenomenon known as self-healing has not been studied with sufficient depth for the Sanergy HT 441. Thus, different series of temperature and short pre-treatments times were tested, and self-healing properties were observed by means of SEM surface characterization and chemical analysis. The results indicate that self-healing can be obtained within short times using isothermal pre-treatments at temperatures over 750 °C. / Solid Oxide Fuel Cells (SOFC) är attraktiva kandidater i jakten på renare och energieffektiv produktion på grund av deras många fördelar som bränsleflexibilitet, modularitet och exceptionella effektivitet när kombinerad värme och kraft utnyttjas. Ett viktigt element i dess utformning är sammankopplingar som huvudsakligen tillverkas av anpassade ferritiska rostfria stål för att transportera elektricitet mellan två angränsande celler. De höga driftstemperaturerna ökar emellertid tjockleken på kromskalan i dessa stål, vilket minskar deras konduktivitet. Samtidigt förorenar krom (VI) på grund av den våta atmosfären elektroderna och reducerar celllivslängden. Därför har det smala urvalet av lämpliga material och höga produktionskostnader hindrat deras kommersialisering. De senaste framstegen inom SOFC-drift med lägre temperatur har öppnat ett fönster för nya sammankopplingsmaterial och innovativa processer. En Ce / Co-nanocoating kan appliceras i det lättillgängliga AISI 441 ferritstålet för att bilda ett skyddande spinelloxidskikt som minskar effekten av båda nedbrytningarna i sammankopplingarna. Beläggningen appliceras i en kontinuerlig rulle-till-rullningsprocess och sedan pressas sammankopplingsformen in i materialet, tillverkat som Sanergy HT 441 av Sandvik. Mekaniska spänningar orsakar emellertid mikrokrackar som exponerar underlagsmaterialet, vilket kan påverka oxidationsbeteendet negativt.Lyckligtvis kan förbehandlingar uppnå att spinellen diffunderar över korta avstånd och kombineras med element i underlaget och homogeniserar den skyddande effekten. Detta fenomen som kallas självhelande har inte studerats med tillräckligt djup för Sanergy HT 441. Således testades olika serier av temperatur och korta förbehandlingstider, och självhelande egenskaper observerades med hjälp av SEM-ytkarakterisering och kemisk analys. Resultaten indikerar att självläkning kan uppnås inom korta tider med användning av isotermisk förbehandling vid temperaturer över 750 ° C.
6

High temperature corrosion during waste incineration : characterisation, causes and prevention of chlorine-induced corrosion

Viklund, Peter January 2011 (has links)
Waste-fired boilers suffer severely from corrosion of critical components such as superheater tubes. In this work the high temperature corrosion of candidate superheater alloys have been investigated by detailed laboratory studies and controlled field exposures in full-scale boilers. In a laboratory study the detrimental effect of gaseous hydrochloric acid (HCl) on three  different ground surface and preoxidised austenitic stainless steels was investigated. Exposures were conducted in an environment comprising N2-10O2-5H2O-0.05HCl at both 400 °C and 700 °C. A positive effect of preoxidation is evident when the alloys are exposed at 400 °C. Oxide layers formed during preoxidation effectively suppress chlorine ingress and lower the corrosion rate for all three materials while accelerated corrosion and chlorine accumulation at the metal/oxide interface is detected for ground surface specimens. The positive effect of preoxidation is lost at 700 °C and corrosion resistance is dependent on alloying level. At 700 °C metal chloride evaporation contributes significantly to the material degradation. Based on the results, high temperature corrosion in the presence of gaseous HCl is discussed in general terms.  In two different waste-fired boilers measures for counteracting superheater corrosion were investigated. In a grate-boiler the deposit formation and high temperature corrosion of some candidate superheater materials were studied. Metal loss measurements showed unacceptably high corrosion rates for the lower alloyed ferritic steels 13CrMo44 (Fe-1Cr-0.5Mo) and HCM12A (Fe-11Cr-2W), as well as for the austenitic Super 304 (Fe-18Cr-9Ni-3Cu). The corrosion attack for these alloys was manifested by the formation of mixed metal chloride/metal oxide scales. A different type of behaviour was seen for the higher alloyed austenitic steels and nickel-base alloys, which were able to form a chromium-enriched oxide next to the metal. However, the alloys suffered from localised pitting attack. Since analyses of the deposit revealed appreciable amounts of low melting salt mixtures such as ZnCl2-KCl, PbCl2-KCl, FeCl2-KCl and NaCl-NiCl2, oxide dissolution in these molten salts is the probable reason for pitting attack. In a waste-fired boiler ammonium sulphate solution was added to the flue gas and the effect on flue gas and deposit composition was evaluated. It was evident that the sulphur-rich additive reduced the amount of alkali chlorides in both the flue gas and the deposit. Results also indicated that the initial corrosion rates were lowered with the use of ammonium sulphate. It was concluded that using the additive could be a possible strategy for changing the flue gas chemistry so that superheater corrosion is mitigated. / <p>QC 20110414</p>
7

Silicon Carbide - Nanostructured Ferritic Alloy Composites for Nuclear Applications

Bawane, Kaustubh Krishna 10 January 2020 (has links)
Silicon carbide and nanostructured ferritic alloy (SiC-NFA) composites have the potential to maintain the outstanding high temperature corrosion and irradiation resistance and enhance the mechanical integrity for nuclear cladding. However, the formation of detrimental silicide phases due to reaction between SiC and NFA remains a major challenge. By introducing a carbon interfacial barrier on NFA (C@NFA), SiC-C@NFA composites are investigated to reduce the reaction between SiC and NFA. In a similar way, the effect of chromium carbide (Cr3C2) interfacial barrier on SiC (Cr3C2@SiC) is also presented for Cr3C2@SiC-NFA composites. Both the coatings were successful in suppressing silicide formation. However, despite the presence of coatings, SiC was fully consumed during spark plasma sintering process. TEM and EBSD investigations revealed that spark plasma sintered SiC-C@NFA and Cr3C2@SiC-NFA formed varying amounts of different carbides such as (Fe,Cr)7C3, (Ti,W)C and graphite phases in their microstructure. Detailed microstructural examinations after long term thermal treatment at 1000oC on the microstructure of Cr3C2@SiC-NFA showed precipitation of new (Fe,Cr)7C3, (Ti,W)C carbides and also the growth of existing and new carbides. The results were successfully explained using ThermoCalc precipitation and coarsening simulations respectively. The oxidation resistance of 5, 15 and 25 vol% SiC@NFA and Cr3C2@SiC-NFA composites at 500-1000oC temperature under air+45%water vapor containing atmosphere is investigated. Oxidation temperature effects on surface morphologies, scale characteristics, and cross-sectional microstructures were investigated and analyzed using XRD and SEM. SiC-C@NFA showed reduced weight gain but also showed considerable internal oxidation. Cr3C2@SiC-NFA composites showed a reduction in weight gain with the increasing volume fraction of Cr3C2@SiC (5, 15 and 25) without any indication of internal oxidation in the microstructure. 25 vol% SiC-C@NFA and 25 vol% Cr3C2@SiC-NFA showed over 90% and 97% increase in oxidation resistance (in terms of weight gain) as compared to NFA. The results were explained using the fundamental understanding of the oxidation process and ThermoCalc/DICTRA simulations. Finally, the irradiation performance of SiC-C@NFA and Cr3C2@SiC-NFA composites was assessed in comparison with NFA using state-of-the-art TEM equipped with in-situ ion irradiation capability. Kr++ ions with 1 MeV energy was used for irradiation experiments. The effect of ion irradiation was recorded after particular dose levels (0-10 dpa) at 300oC and 450oC temperatures. NFA sample showed heavy dislocation damage at both 300oC and 450oC increasing gradually with dose levels (0-10 dpa). Cr3C2@SiC-NFA showed similar behavior as NFA at 300oC. However, at 450oC, Cr3C2@SiC-NFA showed remarkably low dislocation loop density and loop size as compared to NFA. At 300oC, microstructures of NFA and Cr3C2@SiC-NFA show predominantly 1/2<111> type dislocation loops. At 450oC, NFA showed predominantly <100> type loops, however, Cr3C2@SiC-NFA composite was still predominant in ½<111> loops. The possible reasons for this interesting behavior were discussed based on the large surface sink effects and enhanced interstitial-vacancy recombination at higher temperatures. The molecular dynamics simulations did not show considerable difference in formation energies of ½<111> and <100> loops for NFA and Cr3C2@SiC-NFA composites. The additional Si element in the SiC-NFA sample could have been an important factor in determining the dominant loop types. SiC-C@NFA composites showed heavy dislocation damage during irradiation at 300oC. At 450oC, SiC-C@NFA showed high dislocation damage in thicker regions. Thinner regions near the edge of TEM samples were largely free from dislocation loops. The precipitation and growth of new (Ti,W)C carbides were observed at 450oC with increasing irradiation dose. (Fe,Cr)7C3 precipitates were largely free from any dislocation damage. Some Kr bubbles were observed inside (Fe,Cr)7C3 precipitates and at the interface between α-ferrite matrix and carbides ((Fe,Cr)7C3, (Ti,W)C). The results were discussed using the fundamental understanding of irradiation and ThermoCalc simulations. / Doctor of Philosophy / With the United Nations describing climate change as 'the most systematic threat to humankind', there is a serious need to control the world's carbon emissions. The ever increasing global energy needs can be fulfilled by the development of clean energy technologies. Nuclear power is an attractive option as it can produce low cost electricity on a large scale with greenhouse gas emissions per kilowatt-hour equivalent to wind, hydropower and solar. The problem with nuclear power is its vulnerability to potentially disastrous accidents. Traditionally, fuel claddings, rods which encase nuclear fuel (e.g. UO2), are made using zirconium based alloys. Under 'loss of coolant accident (LOCA) scenarios' zirconium reacts with high temperature steam to produce large amounts of hydrogen which can explode. The risks associated with accidents can be greatly reduced by the development of new accident tolerant materials. Nanostructured ferritic alloys (NFA) and silicon carbide (SiC) are long considered are leading candidates for replacing zirconium alloys for fuel cladding applications. In this dissertation, a novel composite of SiC and NFA was fabricated using spark plasma sintering (SPS) technology. Chromium carbide (Cr3C2) and carbon (C) coatings were employed on SiC and NFA powder particles respectively to act as reaction barrier between SiC and NFA. Microstructural evolution after spark plasma sintering was studied using advanced characterization tools such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) techniques. The results revealed that the Cr3C2 and C coatings successfully suppressed the formation of detrimental reaction products such as iron silicide. However, some reaction products such as (Fe,Cr)7C3 and (Ti,W)C carbides and graphite retained in the microstructure. This novel composite material was subjected to high temperature oxidation under a water vapor environment to study its performance under the simulated reactor environment. The degradation of the material due to high temperature irradiation was studied using state-of-the-art TEM equipped with in-situ ion irradiation capabilities. The results revealed excellent oxidation and irradiation resistance in SiC-NFA composites as compared to NFA. The results were discussed based on fundamental theories and thermodynamic simulations using ThermoCalc software. The findings of this dissertation imply a great potential for SiC-NFA based composites for future reactor material designs.
8

High temperature corrosion in biomass-fired energy applications : Alloying effects and test environment comparisons

Elger, Ragna January 2016 (has links)
To reduce the greenhouse effect, the use of renewable fuel has to be increased. As renewable fuel has different characteristics compared to fossil fuel regarding content of trace metals, alkali, chlorine and sulphur, the corrosion characteristics in high temperature energy processes have to be evaluated. This thesis concerns high temperature corrosion in the superheater region of a boiler and the syngas cooler area of a gasifier. For the superheater region, laboratory exposures were performed. The methods included a salt dip exposure, where samples were dipped in an equimolar solution of ZnCl2 and KCl, and two salt bed exposures with different chlorine concentrations, 10 and 20 wt%. Ranking of the materials showed that a Ni content above 10 wt% and Cr above 20 wt% reduced corrosion rates in the salt dip and in the 10% Cl salt bed exposure. For exposure in the 20% Cl bed, even higher alloying was needed. An alumina forming austenitic steel showed future potential in sulphidising-chlorinating environments. For the gasifier region, the effect of HCl in a simulated gasifier atmosphere was studied and also samples exposed in the syngas section of a biomass gasifier were investigated. Metal loss was low for all exposures and it was observed that chlorine had minor influence. For the plant exposed samples, a difference compared to that reported for coal gasifiers was the absence of FeS for the lowest alloyed steel. Instead, a deposit with pronounced content of Zn, Ca, S and O was present on the surface. Zinc was suggested to mitigate corrosion. Thermodynamic modelling was used to explain phases present and to predict the nitridation behaviour of an alumina forming austenitic steel. Equilibrium and kinetic modelling of the nitridation showed good coherence with the observed microstructures. However, the kinetic modelling resulted in larger nitridation depths than observed experimentally which was attributed to the presence of a thin oxide layer on the surface of the samples. / <p>QC 20160510</p>
9

EB-PBF additive manufacturing of Alloy 718 : Effect of shot peening on surface characteristics and high temperature corrosion performance

Mohandass, Venkataramanan January 2019 (has links)
There is an upsurge of research interest on Alloy 718 additively manufactured (AM) by electron beam powder bed fusion (EB-PBF) technique in aero and land-based gas turbine engines. However, the surface quality of the manufactured components has always been a major challenge. Several factors, including powder particle size, layer thickness, beam parameters, scanning strategies, and inclination angle of the build, govern the surface characteristics. Along with surface roughness resulted from partially melted powder particles, surface defects such as balls, satellites, microcracks as well as up-skin and down-skin surfaces can enhance the vulnerability of the manufactured parts to corrosion. When the surface is unable to withstand the exposed environment adequately, corrosion can be triggered. The surface-induced corrosion failures are increasingly becoming more challenging as the AM components often have complex geometries that render them even more difficult to finish. So, the relatively poor surface finish is the barrier to the full exploitation of the AM industry. In the present study, to achieve the desired surface quality, hence an improved high temperature corrosion performance, shot peening was implemented on Alloy 718 parts manufactured by EB-PBF. The high temperature corrosion behavior of the parts was investigated in an ambient air environment at 650 and 800 °C for up to 336 h. The underlying physical and chemical factors at play of the parts exposed to the corrosive environment were investigated too. The effect of topographical features (e.g., surface roughness) and microstructural characteristics (e.g., grain structure, phases, and defects) on high temperature corrosion behavior were analyzed by 3D surface profilometry, hardness test, optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), X-ray diffractometry (XRD) and electron backscatter diffraction (EBSD). The surface roughness and high temperature corrosion rate of the parts was significantly reduced after shot peening.
10

The corrosion behavior of Fe-Cr-Ni alloys in complex high temperature gaseous atmospheres containing the reactants oxygen, sulphur and carbon

Kneeshaw, Jonathan Andrew January 1987 (has links)
A systematic in-depth study has been undertaken to establish the corrosion mechanism of a Model 25Cr-35Ni-Fe alloy and four commercial alloys HP40Nb, AISI314, HP40Al and Alloy 800H in low oxygen, high sulphur and carbon containing environments typically found in coal gasification and fluidised bed combustion processes. A review of present knowledge of corrosion processes in purely oxidizing, sulphidizing and carburizing environments and multiple reactant carburizing/ oxidizing, carburizing/sulphizing and oxidizing/sulphidizing environments is given. The experimental programme was designed to establish the role of sulphur on the corrosion process by studying corrosion mechanisms in a sulphurfree H2-7%C0-1.5%H2o gas, a low sulphur H2-7%C0-1.5%H20-0.2%H 2 S gas (pS2_8= 10 bar), and a high sulphur H 2 -7%C0-1.5%H 2 0-0.6%H 2 S gas (pS = lO bar) at 800'C. All_21j_hree environments had a constant partiaf pressure of oxygen (po2 = 10 bar) and carbon activity (ac = 0.3). In the sulphur-free gas the Model alloy formed a thin uniform cr 2 o 3 layer which grew at a constant parabolic rate throughout the exposure period of 0 - 5000 hours. Surface working increased the growth rate and thickness of the Cr 2 o 3 layer but created a large number of cracks and pores which allowed carbon containing gaseous species to diffuse through the oxide to form carbide precipitates in the alloy substrata. Alloying additions of Si promoted the formation of an inner SiO layer which reduced the corrosion rate by cutting off the outward diffusion of Cr, Mn and Fe. Alloying additions of Mn promoted the formation of an additional outer (Mn, Fe )Cr 2o 4 layer. The 3. 5% Al content of the HP40Al was insufficient to form a complete Al 2 o3 layer. Alloy 800H was susceptible to localised internal oxidation. Adding a low level of sulphur (0.2% H 2 S) to the gas increased the corrosion rate of the Model alloy in the 1nitial stages. This rate gradually slowed down before becoming parabolic after 1000 - 2000 hours. This was due to the nucleation of sulphides in addition to oxides. The oxides and sulphides grew side by side until the oxides overgrew the sulphides to form a complete Cr 2o3 layer which cut off further ingress of sulphur from the gas. The entrapped sulphides promoted localized thickening of the oxide layer. Eventually the sulphur redistributed from the sulphides in the scale to internal sulphide precipitates in the alloy with the corrosion rate returning to that of the sulphur-fre,e gas for the rest of the exposure period (5000 hours total). In the commercial alloys the internal sulphide precipitates prevented the inner Si02 layer becoming complete. Sulphur doped the (Mn, Fe) Cr 2 0 4 outer layer ana the intermediate Cr 2o3 layer formed from the spinal layer, increasing the number of cation . vacancies and the growth rate of the scale. These factors caused a massive Cr depletion of the alloy substrata after several thousand hours. The internal carbides became unstable which led to a massive amount of internal attack and a dramatic increase (breakaway) in the corrosion rate. Due to its thickness and the presence of Si02 inner layer the external scale became susceptible to spallation. If this occurred the oxides and sulphides nucleated on the alloy surface again but sulphides. protective alloy. insufficient Cr was available for the oxides to overgrow the The sulphides therefore grew to form a fast growing nonsulphide scale which soon led to catastrophic failure of the Increasing the level of sulphur in the gas to 0.6% H2S caused oxides and sulphides to nucleate on the surface, but in this case the sulphides overgrew the oxides to form thick fast growing non-protective sulphide scales on all the alloys.

Page generated in 0.1861 seconds