• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EB-PBF additive manufacturing of Alloy 718 : Effect of shot peening on surface characteristics and high temperature corrosion performance

Mohandass, Venkataramanan January 2019 (has links)
There is an upsurge of research interest on Alloy 718 additively manufactured (AM) by electron beam powder bed fusion (EB-PBF) technique in aero and land-based gas turbine engines. However, the surface quality of the manufactured components has always been a major challenge. Several factors, including powder particle size, layer thickness, beam parameters, scanning strategies, and inclination angle of the build, govern the surface characteristics. Along with surface roughness resulted from partially melted powder particles, surface defects such as balls, satellites, microcracks as well as up-skin and down-skin surfaces can enhance the vulnerability of the manufactured parts to corrosion. When the surface is unable to withstand the exposed environment adequately, corrosion can be triggered. The surface-induced corrosion failures are increasingly becoming more challenging as the AM components often have complex geometries that render them even more difficult to finish. So, the relatively poor surface finish is the barrier to the full exploitation of the AM industry. In the present study, to achieve the desired surface quality, hence an improved high temperature corrosion performance, shot peening was implemented on Alloy 718 parts manufactured by EB-PBF. The high temperature corrosion behavior of the parts was investigated in an ambient air environment at 650 and 800 °C for up to 336 h. The underlying physical and chemical factors at play of the parts exposed to the corrosive environment were investigated too. The effect of topographical features (e.g., surface roughness) and microstructural characteristics (e.g., grain structure, phases, and defects) on high temperature corrosion behavior were analyzed by 3D surface profilometry, hardness test, optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), X-ray diffractometry (XRD) and electron backscatter diffraction (EBSD). The surface roughness and high temperature corrosion rate of the parts was significantly reduced after shot peening.
2

Process characterisation of an additive manufacturing equipment : An analysis of the effect of electron beam powder bed fusion process parameters on the melt pool geometry and microstructure of Ti-6Al-4V

Ljusell, Ida January 2023 (has links)
Additive manufacturing (AM) are manufacturing methods where components are produced by adding material layer by layer which allows for a high freedom of design as well as little or no material waste compared to conventional manufacturing methods. Despite the many benefits of AM there are still problems concerning the quality of the produced material. In this project an AM equipment was tested by using different process parameters and comparing their effect on the printed material. An electron beam powder bed fusion equipment was used and with varying values for beam power, scanning speed and preheat temperature. Initial tests were done using Ti-6Al-4V plates with a Ti-6Al-4V powder then being used for a few selected process settings. The EB-PBF did not act as predicted with varying beam powers compared to input values. Melting tracks using powder also proved to be difficult due to, for example, the build plate moving from being overcharged by the electron beam and the difficulty to control the powder layers. The geometry of printed tracks on plates was analysed and values for melt pool width, depth and height was measured. Both width and depth for the most part have a linear increase with increased power and line energy density. Preheating temperature has a smaller effect on the width and depth but leads to more even tracks.
3

Influence of Two-Step Heat Treatments on Microstructure and Mechanical Properties of a β-Solidifying Titanium Aluminide Alloy Fabricated via Electron Beam Powder Bed Fusion

Moritz, Juliane, Teschke, Mirko, Marquardt, Axel, Heinze, Stefan, Heckert, Mirko, Stepien, Lukas, López, Elena, Brueckner, Frank, Walther, Frank, Leyens, Christoph 27 February 2024 (has links)
Additive manufacturing technologies, particularly electron beam powder bed fusion (PBF-EB/M), are becoming increasingly important for the processing of intermetallic titanium aluminides. This study presents the effects of hot isostatic pressing (HIP) and subsequent two-step heat treatments on the microstructure and mechanical properties of the TNM-B1 alloy (Ti–43.5Al–4Nb–1Mo–0.1B) fabricated via PBF-EB/M. Adequate solution heat treatment temperatures allow the adjustment of fully lamellar (FL) and nearly lamellar (NL-β) microstructures. The specimens are characterized by optical microscopy and scanning electron microscopy (SEM), X-ray computed tomography (CT), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). The mechanical properties at ambient temperatures are evaluated via tensile testing and subsequent fractography. While lack-of-fusion defects are the main causes of failure in the as-built condition, the mechanical properties in the heat-treated conditions are predominantly controlled by the microstructure. The highest ultimate tensile strength is achieved after HIP due to the elimination of lack-of-fusion defects. The results reveal challenges originating from the PBF-EB/M process, for example, local variations in chemical composition due to aluminum evaporation, which in turn affect the microstructures after heat treatment. For designing suitable heat treatment strategies, particular attention should therefore be paid to the microstructural characteristics associated with additive manufacturing.
4

Locally adapted microstructures in an additively manufactured titanium aluminide alloy through process parameter variation and heat treatment

Moritz, Juliane, Teschke, Mirko, Marquardt, Axel, Stepien, Lukas, López, Elena, Brueckner, Frank, Walther, Frank, Leyens, Christoph 27 February 2024 (has links)
Electron beam powder bed fusion (PBF-EB/M) has been attracting great research interest as a promising technology for additive manufacturing of titanium aluminide alloys. However, challenges often arise from the process-induced evaporation of aluminum, which is linked to the PBF-EB/M process parameters. This study applies different volumetric energy densities during PBF-EB/M processing to deliberately adjust the aluminum contents in additively manufactured Ti–43.5Al–4Nb–1Mo–0.1B (TNM-B1) samples. The specimens are subsequently subjected to hot isostatic pressing (HIP) and a two-step heat treatment. The influence of process parameter variation and heat treatments on microstructure and defect distribution are investigated using optical and scanning electron microscopy, as well as X-ray computed tomography (CT). Depending on the aluminum content, shifts in the phase transition temperatures can be identified via differential scanning calorimetry (DSC). It is confirmed that the microstructure after heat treatment is strongly linked to the PBF-EB/M parameters and the associated aluminum evaporation. The feasibility of producing locally adapted microstructures within one component through process parameter variation and subsequent heat treatment can be demonstrated. Thus, fully lamellar and nearly lamellar microstructures in two adjacent component areas can be adjusted, respectively.
5

Electron beam powder bed fusion manufacturing of a Ti-5Al-5Mo-5V-3Cr alloy: a microstructure and mechanical properties’ correlation study

Hendl, Julius, Marquardt, Axel, Leyens, Christoph 26 February 2024 (has links)
Electron beam powder bed fusion (EB-PBF) is a powder-bed fusion additive manufacturing process, which is suitable for fabricating high-performance parts for a wide range of industrial applications, such as medical and aerospace. Due to its deep curing capabilities, the metastable β-alloy Ti-5Al-5Mo-5V-3Cr (Ti-5553) is currently mostly used in the landing gear of airplanes. However, its great mechanical properties make it also attractive for small, complex, and load-bearing components. In this study, nine melting parameter sets, combining different scanning speeds and beam currents, were used in the EB-PBF ARCAM A2X system. Furthermore, the correlation between the microstructure and the mechanical properties was investigated and analyzed by applying µ-focus computer tomography and microscopic methods (optical, SEM/EDS). A significant influence of the different melting parameters on the microstructure as well as on the mechanical performance was found. In a subsequent step, three melting parameters were selected and the specimens were heat-treated (BASCA, STA) for further investigation. The experimental results of this work indicate that Ti-5553 parts can be manufactured successfully with high quality (ρ > 99.60%), and post-processing heat-treatments can be used to modify the microstructure in such a way that the parts are suitable for a large variety of possible applications.

Page generated in 0.0969 seconds