During the construction of the new urban area in the north-eastern part of Stockholm, Stockholm Royal Seaport, groundwater with extremely elevated levels of the carcinogenic aromatic hydrocarbon benzene was discovered in the area Hjorthagen. Such a contamination can be remediated in-situ by the use of chemical oxidation and biodegradation. Due to the fact that many factors such as contaminant composition, groundwater characteristics and temperature vary between sites, smaller bench scale studies are usually conducted before the full scale remediation on site. Little published research exists on the ability of these remediation techniques in areas with lower groundwater temperature such as Stockholm, why the need of a bench-scale study in this case is even larger. The objective of this master thesis is to, out of three investigated remediation agents, find the most suitable one for remediation of the benzene-contaminated groundwater in Hjorthagen. This was made in the form of a bench-scale study and the techniques studied were chemical oxidation, for which the two agents hydrogen peroxide (uncatalyzed and catalyzed in the form of Fenton’s reagent) and persulfate (activated with iron (II)) were used, and biological degradation by the use of a calcium peroxide-based compound. The study showed that the benzene-contaminated groundwater was best remediated with Fenton’s reagent, which was able to degrade the benzene with great success.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-171834 |
Date | January 2013 |
Creators | Billersjö, Sofia |
Publisher | KTH, Mark- och vattenteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-LWR Degree Project, 1651-064X ; 2013:19 |
Page generated in 0.0014 seconds