Return to search

Machine Learning for Early Prediction of Pneumothorax in the Intensive Care Unit / Tidig förutsägelse av pneumothorax med maskininlärning inom intensivvården

By taking advantage of the increasing amount of available electronic health data, applications of machine learning in the intensive care unit have the potential to improve medical diagnostics and risk stratification. This thesis proposes an approach for early onset prediction of pneumothorax with such technique, using time series data extracted from a clinical database. The prevalence of pneumothorax among patients is identified through ICD-9 codes, and labels for the onset are obtained by relying on proxies closely related to the condition. Both simple algorithms and deep learning networks are used in a sliding window-based prediction framework, and the importance of each feature is measured with weighted Shapley values. The results proved the feasibility of this approach using Long Short-Term Memory models, although the number of false positives is noticeably high. Mechanical ventilation was the most contributing feature for the outcome. In future work, the focus should be on addressing the large class imbalance that prevails, along with considering more well-founded methods of target labeling.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-309330
Date January 2022
CreatorsMalm, Emma
PublisherKTH, Skolan för kemi, bioteknologi och hälsa (CBH), KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2022:010

Page generated in 0.002 seconds