Return to search

Affine Arithmetic Based Methods for Power Systems Analysis Considering Intermittent Sources of Power

Intermittent power sources such as wind and solar are increasingly penetrating electrical grids, mainly motivated by global warming concerns and government policies. These intermittent and non-dispatchable sources of power affect the operation and control of the power system because of the uncertainties associated with their output power. Depending on the penetration level of intermittent sources of power, the electric grid may experience considerable changes in power flows and synchronizing torques associated with system stability, because of the variability of the power injections, among several other factors. Thus, adequate and efficient techniques are required to properly analyze the system stability under such uncertainties.

A variety of methods are available in the literature to perform power flow, transient, and voltage stability analyses considering uncertainties associated with electrical parameters. Some of these methods are computationally inefficient and require assumptions regarding the probability density functions (pdfs) of the uncertain variables that may be unrealistic in some cases. Thus, this thesis proposes computationally efficient Affine Arithmetic (AA)-based approaches for voltage and transient stability assessment of power systems, considering uncertainties associated with power injections due to intermittent sources of power. In the proposed AA-based methods, the estimation of the output power of the intermittent sources and their associated uncertainty are modeled as intervals, without any need for assumptions regarding pdfs. This is a more desirable characteristic when dealing with intermittent sources of power, since the pdfs of the output power depends on the planning horizon and prediction method, among several other factors. The proposed AA-based approaches take into account the correlations among variables, thus avoiding error explosions attributed to other self-validated techniques such as Interval Arithmetic (IA).

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/8161
Date January 2013
CreatorsMunoz Guerrero, Juan Carlos
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0146 seconds