Return to search

Modelos de regressão beta retangular heteroscedásticos aumentados em zeros e uns / Zero-one augmented heteroscedastic rectangular beta regression models

Orientador: Caio Lucidius Naberezny Azevedo / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T19:30:15Z (GMT). No. of bitstreams: 1
Silva_AnaRobertadosSantos_M.pdf: 4052475 bytes, checksum: 08fb6f3f7b4ed838df4eea2dbcf06a29 (MD5)
Previous issue date: 2015 / Resumo: Neste trabalho desenvolvemos a distribuição beta retangular aumentada em zero e um, bem como um correspondente modelo de regressão beta retangular aumentado em zero e um para analisar dados limitados-aumentados (representados por variáveis aleatórias mistas com suporte limitado), que apresentam valores discrepantes. Desenvolvemos ferramentas de inferência sob as abordagens bayesiana e frequentista. No que diz respeito à inferência bayesiana, devido à impossibilidade de obtenção analítica das posteriores de interesse, utilizou-se algoritmos MCMC. Com relação à estimação frequentista, utilizamos o algoritmo EM. Desenvolvemos técnicas de análise de resíduos, utilizando o resíduo quantil aleatorizado, tanto sob o enfoque frequentista quanto bayesiano. Desenvolvemos, também, medidas de influência, somente sob o enfoque bayesiano, utilizando a medida de Kullback Leibler. Além disso, adaptamos métodos de checagem preditiva à posteriori existentes na literatura, ao nosso modelo, utilizando medidas de discrepância apropriadas. Para a comparação de modelos, utilizamos os critérios usuais na literatura, como AIC, BIC e DIC. Realizamos diversos estudos de simulação, considerando algumas situações de interesse prático, com o intuito de comparar as estimativas bayesianas com as frequentistas, bem como avaliar o comportamento das ferramentas de diagnóstico desenvolvidas. Um conjunto de dados da área psicométrica foi analisado para ilustrar o potencial do ferramental desenvolvido / Abstract: In this work we developed the zero-one augmented rectangular beta distribution, as well as a correspondent zero-one augmented rectangular beta regression model to analyze limited-augmented data (represented by mixed random variables with limited support), which present outliers. We develop inference tools under the Bayesian and frequentist approaches. Regarding to the Bayesian inference, due the impossibility of obtaining analytically the posterior distributions of interest, we used MCMC algorithms. Concerning the frequentist estimation, we use the EM algorithm. We develop techniques of residual analysis, by using the randomized quantile residuals, under both frequentist and Bayesian approaches. We also developed influence measures, only under the Bayesian approach, by using the measure of Kullback Leibler. In addition, we adapt methods of posterior predictive checking available in the literature, to our model, using appropriate discrepancy measures. For model selection, we use the criteria commonly employed in the literature, such as AIC, BIC and DIC. We performed several simulation studies, considering some situations of practical interest, in order to compare the Bayesian and frequentist estimates, as well as to evaluate the behavior of the developed diagnostic tools. A psychometric real data set was analyzed to illustrate the performance of the developed tools / Mestrado / Estatistica / Mestra em Estatística

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306787
Date26 August 2018
CreatorsSilva, Ana Roberta dos Santos, 1989-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Azevedo, Caio Lucidius Naberezny, 1979-, Lachos Dávila, Víctor Hugo, Guzmán, Jorge Luis Bazán
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Estatística
Source SetsIBICT Brazilian ETDs
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format160 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds