Return to search

Efficient local search for several combinatorial optimization problems / Recherche locale performante pour la résolution de plusieurs problèmes combinatoires

Cette thèse porte sur la conception et l'implémentation d'algorithmes approchés pour l'optimisation en variables discrètes. Plus particulièrement, dans cette étude nous nous intéressons à la résolution de trois problèmes combinatoires difficiles : le « Bin-Packing », la « Réaffectation de machines » et la « Gestion des rames sur les sites ferroviaires ». Le premier est un problème d'optimisation classique et bien connu, tandis que les deux autres, issus du monde industriel, ont été proposés respectivement par Google et par la SNCF. Pour chaque problème, nous proposons une approche heuristique basée sur la recherche locale et nous comparons nos résultats avec les meilleurs résultats connus dans la littérature. En outre, en guise d'introduction aux méthodes de recherche locale mise en œuvre dans cette thèse, deux métaheuristiques, GRASP et Recherche Tabou, sont présentées à travers leur application au problème de la couverture minimale. / This Ph.D. thesis concerns algorithms for Combinatorial Optimization Problems. In Combinatorial Optimization Problems the set of feasible solutions is discrete or can be reduced to a discrete one, and the goal is to find the best possible solution. Specifically, in this research we consider three different problems in the field of Combinatorial Optimization including One-dimensional Bin Packing (and two similar problems), Machine Reassignment Problem and Rolling Stock Problem. The first one is a classical and well known optimization problem, while the other two are real world and very large scale problems arising in industry and have been recently proposed by Google and French Railways (SNCF) respectively. For each problem we propose a local search based heuristic algorithm and we compare our results with the best known results in the literature. Additionally, as an introduction to local search methods, two metaheuristic approaches, GRASP and Tabu Search are explained through a computational study on Set Covering Problem.

Identiferoai:union.ndltd.org:theses.fr/2015MONTS010
Date20 November 2015
CreatorsBuljubasic, Mirsad
ContributorsMontpellier, Vasquez, Michel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds