[pt] A história recente da Lógica Matemática foi marcada por alguns conflitos entre diferentes correntes filosóficas, cada uma buscando contextualizar a atividade matemática a partir de seu próprio prisma analítico e, por meio disso, tentando conquistar para si mesma o pódio fundacional das Ciências Formais Tais discussões, perenes o bastante para ainda quedarem sem solução, foram fortemente impactadas pela apropriação semântica de alguns resultados técnicos obtidos no campo da teoria da prova, o que redefiniu
a relação existente entre as abordagens clássica e intuicionista na matemática. Neste contexto, a presente dissertação tem por finalidade realizar uma descrição da emergente literatura de propostas integrativas entre diferentes sistemas lógicos e matemáticos (apelidadas por Dag Prawitz de ecumenismo lógico), além de investigar alguns impactos que mudanças formais poderiam ocasionar nas concepções filosóficas de algumas teorias matemáticas. No capítulo introdutório, traçamos um panorama geral desta nova proposta ecumênica e analisamos com mais atenção o conflito entre as lógicas Clássica, Intuicionista e Minimal, considerado por muitos como um dos mais influentes na literatura contemporânea. No segundo capítulo, este trabalho fornece uma contribuição original para a literatura ao criar uma nova abordagem ecumênica, além de provar algumas equivalências no interior do sistema Clássico-Intuicionista recentemente criado por Prawitz e compará-lo com uma lógica que criamos usando esta nova abordagem. No terceiro capítulo, contribuímos tanto com a abordagem tradicional quanto com nossa abordagem original ao criar e comparar dua lógicas ecumênicas Minimal-Intuicionistas. Por fim, realizamos uma breve revisão do tímido estado da arte no último capítulo, oferecendo um novo esquema conceitual de interpretação dos sistemas ecumênicos e comentando alguns aspectos promissores do campo, que poderão vir a ser melhor trabalhados no futuro. / [en] The recent history of Mathematical Logic was marked by some conficts between different philosophical positions, each trying to contextualize mathematical activity from its own analytical viewpoint and, with this, trying to conquer the foundational podium of the formal sciences for itself. Such discussions, lasting enough to remain without a solution, were strongly impacted by the semantical appropriation of some technical results obtained in the field of proof theory, which redefined the relation between the classical and intuitionistic approaches to mathematics. In this context, the present dissertation aims to describe the emergent literature about the integration of different logical and mathematical systems (nicknamed logical ecumenism by Dag Prawitz), in addition to investigating some impacts that those formal changes could have on the philosophical conceptions of some mathematical theories. In the introductory chapter, we have outlined a general overview of this new ecumenical proposal and analysed in greater depht the conflicts between Classical, Intuitionistic and Minimal logic, considered by many as one of the most influent on the contemporary literature. In the second chapter, this work provides an original contribution to the literature by creating a new ecumenical approach, in addition to proving some equivalencies within Prawitz s recently created Classical-Intuitionist system, and compares it with the logical system we have created using this new approach. In the third chapter, we contribute both to the traditional approach and our original approach by creating and comparing two Minimal-Intuitionist ecumenical logics. Finally, we briefly review the timid state of the art in the last chapter, offering a new conceptual framework for interpreting ecumenical systems, as well as commenting on some promising aspects of the field, which may be better analyzed in the future.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:34598 |
Date | 30 July 2018 |
Creators | VICTOR LUIS BARROSO NASCIMENTO |
Contributors | LUIZ CARLOS PINHEIRO DIAS PEREIRA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | English |
Type | TEXTO |
Page generated in 0.0026 seconds