Return to search

Modelling CLV in the Insurance Industry Using Deep Learning Methods / Modellering av CLV inom försäkringsbranschen med användande av metoder inom djupinlärning

This paper presents a master’s thesis project in which deep learning methods are used to both calculate and subsequently attempt to maximize Customer Lifetime Value (CLV) for an insurance provider’s customers. Specifically, the report investigates whether panel data comprised of customers monthly insurance policy subscription history can be used with Recurrent Neural Networks (RNN) to achieve better predictive performance than the naïve forecasting model. In order to do this, the use of Long Short Term Memory (LSTM) for anomaly detection in a supervised manner is explored to determine which customers are more likely to change their subscription policies. Whether Deep Reinforcement Learning (DRL) can be used in this setting in order to maximize CLV is also investigated. The study found that the best RNN models outperformed the naïve model in terms of precision on the data set containing customers which are more likely to change their subscription policies. The models suffer, however, from several notable limitations so further research is advised. Selecting those customers was shown to be successful in terms of precision but not sensitivity which suggest that there is a room for improvement. The DRL models did not show a substantial improvement in terms of CLV maximization. / I detta examensarbete presenteras metoder där djupinlärning används för att både beräkna och maximera kundens lönsamhet över tid, Customer Lifetime Value (CLV), för en försäkringsleverantörs kunder. Specifikt undersöker rapporten historisk paneldata som består av kunders månatliga försäkringsinnehav där Recurrent Neural Networks (RNN) används för att uppnå bättre prediktiv prestanda än en naiv prognosmodell. Detta undersöks tillsammans med det neurala nätverket Long Short Term Memory (LSTM), där vi försöker finna anomalier på ett övervakat sätt. Där anomalier syftar på kunder som är mer benägna att ändra sin försäkringspolicy, då den största delen av populationen har samma innehav på månadsbasis. Även en gren av djupinlärning, Deep Reinforcement Learning (DRL), används för att undersöka möjligheten att maximera CLV för denna typ av data. Studien fann att de bästa RNN-modellerna överträffade den naiva modellen i termer av precision i data där kunder är mer benägna att ändra sin försäkringspolicy. Modellerna lider dock av flera anmärkningsvärda begränsningar, så ytterligare forskning rekommenderas. Att välja kunder med hjälp av LSTM visade sig vara framgångsrikt när det gäller precision men inte känslighet vilket tyder på att det finns utrymme för förbättring. DRL-modellerna visade inte någon väsentlig förbättring vad gäller CLV-maximering.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-273607
Date January 2020
CreatorsJablecka, Marta
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020:065

Page generated in 0.0025 seconds