As organizations and critical infrastructure increasingly rely on computer networks for their function, cyber defense becomes more and more important. A recent trend is to employ predictive methods in cybersecurity. Attack projection attempts to predict the next step in an ongoing attack. Previous research has attempted to solve attack projection using deep learning relying solely on LSTM networks. In this work, by contrast, we solved the attack projection problem using three different neural network architectures: an LSTM, a Transformer, and a hybrid LSTMTransformer model. We then proposed a way to integrate our neural models into an existing software framework that relies on sequential rule mining to predict future security alerts. The models were trained and evaluated on a publicly available dataset of network security alerts and evaluated with respect to precision and recall of alert predictions. We found that the Transformer architecture had the best overall performance in all but one experiment and that the LSTM architecture performed the worst across all experiments. / Då organisationer och kritisk infrastruktur blir alltmer beroende av datornätvärk för sin verksamhet, blir cyberförsvar alltmer viktigt. En pågående trend är att använda prediktiva metoder inom cybersäkerhet. Attackprojicering innebär att försöka förutspå nästa steg i en pågående cyberattack. Tidigare forskning som försökte tillämpa djupinlärning på attackprojicering använde sig enbart av LSTMnätverk. I detta arbete använde vi däremot tre olika neurala arkitekturer: en LSTM, en Transformer och en LSTMTransformerhybrid. Vi föreslog sedan ett sätt att integrera våra modeller med ett befintligt mjukvaruramverk som använder sig av sekventiella regler för att förutspå kommande larm. Modellerna tränades och utvärderades på en publik datamängd och utvärderades med hänsyn till precision och återkallelse. Vi fann att Transformermodellen hade bäst prestation i alla utom ett experiment och att LSTMmodellen presterade sämst i alla våra experiment.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-343456 |
Date | January 2023 |
Creators | Kolanowski, Mikael |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:886 |
Page generated in 0.0119 seconds