In the United States, the floodplain maps used in the administration of the National Flood Insurance Program are created and maintained by the Federal Emergency Management Agency. Currently, a nationwide map modernization program is underway to convert the existing paper floodplain maps into a digital format, while continuing to improve the maps and expand the scope of the studies. The flood zones depicted on these maps are developed through engineering studies, using a variety of accepted methods to model and predict flood-prone areas. These methods are classified as detailed, limited detailed, or approximate, corresponding to varying levels of expense and accuracy. Current flood map revision activities across the nation typically consist of developing new hydraulic models, or reusing existing hydraulic model results in conjunction with new, more detailed LiDAR terrain models.
This research develops a profile synthesis method for redelineation of approximate flood boundaries, and evaluates the method's performance and usability. The profile synthesis method is shown to perform reliably on simple floodplain geometry, recreating a water surface profile based only on its floodplain boundaries. When applied to a real-world floodplain studied in a previous flood insurance study, the profile synthesis method is shown to perform adequately, with results comparable to an approximate hydraulic model developed in HEC-RAS. Methods similar to this profile synthesis method for reuse of existing approximate zone boundaries have not been widely documented or evaluated; nevertheless, methods such as this are believed to be common in the revision of approximate zone flood boundaries. As such, this work explores concepts which will be of interest to individuals actively involved in flood map revision and modernization. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35847 |
Date | 19 December 2007 |
Creators | Dickerson, Thomas Ashby |
Contributors | Civil Engineering, Dymond, Randel L., Hancock, Kathleen L., Kibler, David F. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | TDickerson_Thesis_ETD.pdf |
Page generated in 0.0019 seconds