Return to search

Accelerated Simulation of Modelica Models Using an FPGA-Based Approach

This thesis presents Monza, a system for accelerating the simulation of modelsof physical systems described by ordinary differential equations, using a generalpurpose computer with a PCIe FPGA expansion card. The system allows bothautomatic generation of an FPGA implementation from a model described in theModelica programming language, and simulation of said system.Monza accomplishes this by using a customizable hardware architecture forthe FPGA, consisting of a variable number of simple processing elements. A cus-tom compiler, also developed in this thesis, tailors and programs the architectureto run a specific model of a physical system.Testing was done on two test models, a water tank system and a Weibel-lung,with up to several thousand state variables. The resulting system is several timesfaster for smaller models and somewhat slower for larger models compared to aCPU. The conclusion is that the developed hardware architecture and softwaretoolchain is a feasible way of accelerating model execution, but more work isneeded to ensure faster execution at all times.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-145692
Date January 2018
CreatorsLundkvist, Herman, Yngve, Alexander
PublisherLinköpings universitet, Datorteknik, Linköpings universitet, Datorteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds