Return to search

Compact and efficient method of RGB to RGBW data conversion for OLED microdisplays

Colour Electronic Information Displays (EIDs) typically consist of pixels that are made up of red, green and blue (RGB) subpixels. A recent technology, Organic Light Emitting Diode (OLED), offers the potential to create a superior EID. OLED is already suitable for use in small displays and microdisplays for personal electronics products. OLED microdisplays, in particular, exhibit lower power consumption than equivalent direct-view panels thus enabling microdisplay-based personal display systems such as electronic viewfinders and video glasses to exhibit the longest possible battery life. In many EIDs, the light source is white and colour filters are used, at the expense of much absorbed light, to create the RGB light in the subpixels. Hence, the concept has recently emerged of adding a white (W) subpixel to form an RGBW pixel. The advantages can include lower power, higher luminance, and in the case of emissive displays, longer lifetime. One key to realizing the improved performance of RGBW EIDs is a suitable method of data conversion from standard RGB input signal formats to RGBW output signal formats. An OLED microdisplay built on Complementary Metal–Oxide–Semiconductor (CMOS) active matrix back-plane exhibits low power consumption. This device architecture also gives the OLED microdisplay the potential to realize the concept of low-power Display System on a Chip (DSoC). In realizing the performance potential of DSoC on an RGBW OLED microdisplay, there is a trade-off between system resources used to perform the data conversion and the image quality achieved. A compact and efficient method of RGB-to-RGBW data conversion is introduced to fit the requirement of “minimum system resources with indistinguishable visual side-effect” that is appropriate for an OLED microdisplay. In this context, the terms “Compact” and “Efficient” mean that the data conversion functionality (i) is capable of insertion into the signal path, (ii) is capable of integration on the OLED microdisplay back-plane, i.e., is small and (iii) consumes minimal power. The image quality produced by the algorithm is first simulated on a software platform, followed by an optical analysis of the output of the algorithm implemented on a real time hardware platform. The optical analysis shows good preservation of colour fidelity in the image on the microdisplay so that the proposed RGB-to-RGBW data conversion algorithm delivers sufficiently high image quality whilst remaining compact and efficient to meet the development requirements of the RGBW OLED microdisplay with DSoC approach.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:620837
Date January 2012
CreatorsCan, Chi
ContributorsUnderwood, Ian; Walton, Anthony
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/9512

Page generated in 0.0019 seconds