The progression of Moore’s Law has resulted in both embedded and performance computing systems which use an ever increasing number of processing cores integrated in a single chip. Commercial systems are now available which provide hundreds of cores, and academics have proposed architectures for up to 1024 cores. Embedded multicores are increasingly popular as it is easier to guarantee hard-realtime constraints using individual cores dedicated for tasks, than to use traditional time-multiplexed processing. However, finding the optimal hardware configuration to meet these requirements at minimum cost requires extensive trial and error approaches to investigate the design space. This thesis tackles the problems encountered in the design of these large scale multicore systems by first addressing the problem of fast, detailed micro-architectural simulation. Initially addressing embedded systems, this work exploits the lack of hardware cache-coherence support in many deeply embedded systems to increase the available parallelism in the simulation. Then, through partitioning the NoC and using packet counting and cycle skipping reduces the amount of computation required to accurately model the NoC interconnect. In combination, this enables simulation speeds significantly higher than the state of the art, while maintaining less error, when compared to real hardware, than any similar simulator. Simulation speeds reach up to 370MIPS (Million (target) Instructions Per Second), or 110MHz, which is better than typical FPGA prototypes, and approaching final ASIC production speeds. This is achieved while maintaining an error of only 2.1%, significantly lower than other similar simulators. The thesis continues by scaling the simulator past large embedded systems up to 64-1024 core processors, adding support for coherent architectures using the same packet counting techniques along with low overhead context switching to enable the simulation of such large systems with stricter synchronisation requirements. The new interconnect model was partitioned to enable parallel simulation to further improve simulation speeds in a manner which did not sacrifice any accuracy. These innovations were leveraged to investigate significant novel energy saving optimisations to the coherency protocol, processor ISA, and processor micro-architecture. By introducing a new instruction, with the name wait-on-address, the energy spent during spin-wait style synchronisation events can be significantly reduced. This functions by putting the core into a low-power idle state while the cache line of the indicated address is monitored for coherency action. Upon an update or invalidation (or traditional timer or external interrupts) the core will resume execution, but the active energy of running the core pipeline and repeatedly accessing the data and instruction caches is effectively reduced to static idle power. The thesis also shows that existing combined software-hardware schemes to track data regions which do not require coherency can adequately address the directory-associativity problem, and introduces a new coherency sharer encoding which reduces the energy consumed by sharer invalidations when sharers are grouped closely together, such as would be the case with a system running many tasks with a small degree of parallelism in each. The research concludes by using the extremely fast simulation speeds developed to produce a large set of training data, collecting various runtime and energy statistics for a wide range of embedded applications on a huge diverse range of potential MPSoC designs. This data was used to train a series of machine learning based models which were then evaluated on their capacity to predict performance characteristics of unseen workload combinations across the explored MPSoC design space, using only two sample simulations, with promising results from some of the machine learning techniques. The models were then used to produce a ranking of predicted performance across the design space, and on average Random Forest was able to predict the best design within 89% of the runtime performance of the actual best tested design, and better than 93% of the alternative design space. When predicting for a weighted metric of energy, delay and area, Random Forest on average produced results within 93% of the optimum result. In summary this thesis improves upon the state of the art for cycle accurate multicore simulation, introduces novel energy saving changes the the ISA and microarchitecture of future multicore processors, and demonstrates the viability of machine learning techniques to significantly accelerate the design space exploration required to bring a new manycore design to market.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:669347 |
Date | January 2015 |
Creators | Thompson, Christopher Callum |
Contributors | Topham, Nigel; Nagarajan, Vijayanand |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/11699 |
Page generated in 0.0021 seconds