Aprendizado de máquina é uma área de pesquisa na qual se investiga como desenvolver sistemas capazes de aprender com a experiência. Muitos algoritmos de aprendizado possuem parâmetros cujos valores devem ser especificados pelo usuário. Em geral, esses valores influenciam diretamente no processo de aquisição do conhecimento, podendo gerar diferentes modelos. Recentemente, algoritmos de otimização bioinspirados têm sido aplicados com sucesso no ajuste de parâmetros de técnicas de aprendizado de máquina. Essas técnicas podem apresentar diferentes sensibilidades em relação aos valores escolhidos para seus parâmetros e diferentes algoritmos de ajuste de parâmetros podem apresentar desempenhos singulares. Esta dissertação investiga a utilização de algoritmos bioinspirados para o ajuste de parâmetros de redes neurais artificiais e máquinas de vetores de suporte em problemas de classificação. O objetivo dessa investigação é verificar quais são as técnicas que mais se beneficiam do ajuste de parâmetros e quais são os algoritmos mais eficientes para essas técnicas. Os resultados experimentais mostram que os algoritmos bioinspirados conseguem encontrar melhores clasificadores que outras abordagens. Porém, essa melhoria é estatisticamente significativa para alguns conjuntos de dados. Foi possível verificar que o uso dos valores padrão para os parâmetros das técnicas de classificação leva a desempenhos similares aos obtidos com os algoritmos bioinspirados. Entretanto, para alguns conjuntos de dados, o ajuste de parâmetros pode melhorar significativamente o desempenho dos classificadores / Machine learning is a research area whose main goal is to design computational systems capable of learning through experience. Many machine learning techniques have free parameters whose values are generally defined by the user. Usually, these values affect the knowledge acquisition process directly, resulting in different models. Recently, bioinspired optimization algorithms have been successfully applied to the parameter tuning of machine learning techniques. These techniques may present variable sensitivity to the selection of the values of its parameters and different parameter tuning algorithms may present different behaviors. This thesis investigates the use of bioinspired algorithms for the parameter tuning of artificial neural networks and support vector machines in classification problems. The goal of this thesis is to investigate which techniques benefits most from parameter tuning and which are the most efficient algorithms to use with these techniques. Experimental results show that these bioinspired algorithms can find better classifiers when compared to other approaches. However, this improvement is statistically significant only to some datasets. It was possible to verify that the use of standard parameter values for the classification techniques leads to similar performances to those obtained with the bioinspired algorithms. However, for some datasets, the parameter tuning may significantly improve a classifier performance
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06052009-114528 |
Date | 01 April 2009 |
Creators | André Luis Debiaso Rossi |
Contributors | André Carlos Ponce de Leon Ferreira de Carvalho, Ronaldo Cristiano Prati, Ivan Nunes da Silva |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds