Este trabalho apresenta o projeto de pesquisa desenvolvido para a obtenção do título de Mestre em Engenharia Elétrica, na área de concentração de engenharia de sistemas, da Escola Politécnica da Universidade de São Paulo. O principal objetivo deste trabalho foi o desenvolvimento de um sistema de acionamento (driver) para os atuadores piezoelétricos do interferômetro de Fabry-Pérot do espectrômetro BTFI (Brazilian Tunable Filter Imager), um instrumento visitante do telescópio SOAR (Southern Astrophysical Research Telescope), no Chile. O Fabry-Pérot é um instrumento óptico composto de duas superfícies paralelas altamente reflexivas (espelhos), cuja distância é controlada por um sistema de nanoposicionamento composto de três atuadores piezoelétricos (piezos) do tipo APA® (Amplified Piezoelectric Actuators) e um sistema de medida capacitivo. O principal requisito técnico de desempenho do sistema de nanoposicionamento do Fabry-Pérot é tal que o ruído de posicionamento dos espelhos deve ser limitado a 3 . No entanto, os fenômenos não lineares de histerese e escorregamento (creep) dos piezos limitam a precisão de posicionamento do sistema de controle, razão pela qual foi desenvolvido um sistema de acionamento por carga e tensão para os piezos, com o intuito de atenuar suas não linearidades e, consequentemente, melhorar o desempenho do sistema de controle em malha fechada, em termos de ruído de posicionamento. A primeira etapa deste trabalho consistiu da caracterização do modelo e da instrumentação do sistema de nanoposicionamento do Fabry-Pérot, composto de sensores capacitivos, conversores de sinal, atuadores piezoelétricos e sistema de aquisição de dados. Após a caracterização dos componentes do sistema, sua especificação técnica de desempenho de 3 foi traduzida em requisitos de engenharia para o projeto do sistema eletrônico de acionamento dos piezos por carga e tensão, notadamente em termos de ruído, tempo de resposta, banda de resposta em frequência, ganho, corrente e tensão elétricas e dissipação de potência. Uma vez concluído o projeto do driver, um protótipo foi implementado e testado com o sistema real, a fim de se verificar experimentalmente a atenuação dos efeitos não lineares. Finalmente, foram realizados alguns experimentos com o driver e o sistema de nanoposicionamento em malha fechada, controlado por um compensador PI, a fim de se verificar a influência da atenuação das não linearidades dos piezos nesta configuração. Após a análise dos resultados experimentais obtidos, verificou-se que o ruído de posicionamento do sistema, em malha fechada, é significativamente menor quando os fenômenos não linearidades dos piezos são atenuados. / This work represents the research project to obtain the degree of Master of Sciences in Electrical Engineering, specializing in Systems Engineering, at the Escola Politécnica da Universidade de São Paulo, in São Paulo, Brazil. The main objective of this project was to design an electronic power driver for the piezoelectric actuators of the Fabry-Pérot interferometer of the BTFI spectrometer, a visitor instrument of the SOAR telescope, in Chile. Fabry-Pérot is an optical instrument composed by two high reflexive parallel surfaces (mirrors), which distance is controlled by a nanopositioning system composed by three piezoelectric actuators (piezos) of the class APA® (Amplified Piezoelectric Actuators) and a capacitive measurement system. The main performance specification of the Fabry-Pérots nanopositioning system is such that the positioning noise must be limited to 3 . However, the nonlinear behaviors (hysteresis and creep) of the piezos limit the positioning precision of the control system, for which reason a charge and voltage actuation system was developed for the piezos, in order to mitigate its nonlinearities and, consequently, improve the performance of the control system in closed loop, in terms of positioning noise. The first step in this work consisted on the characterization of the Fabry-Pérot nanopositioning systems model and instrumentation, which are composed by capacitive sensors, signal converters, piezoelectric actuators and a data acquisition board. After the characterization of the components of the nanopositioning system, the 3 specification was interpreted to low level engineering requirements for the design of the charge and voltage driver, especially in terms of noise, response time, frequency bandwidth, gain, electrical current, voltage and power dissipation. Once concluded the design of the driver, a prototype was implemented and tested in the real system, in order to verify the attenuation of the nonlinear effects. Finally, some experiments with the driver and the nanopositioning system were performed in closed loop, controlled by a PI compensator, in order to verify the influence of the attenuation of the nonlinearities of the piezos in such configuration. The analysis of the obtained experiment results showed that the nanopositioning systems noise, in closed loop, is significantly reduced when the nonlinear effects of the pizeos are attenuated.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-13082015-113019 |
Date | 23 October 2014 |
Creators | Marchiori, Victor Atilio |
Contributors | Fialho, Fabio de Oliveira |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0027 seconds