Future developments in nanophotonics require facile, inexpensive and parallelizable fabrication methods and need a fundamental understanding of the spectroscopic properties of such nanostructures. These challenges can be met through colloidal self-assembly where pre-synthesized colloids are arranged over large areas at reasonable cost. As so-called colloidal building blocks, plasmonic nanoparticles and quantum dots are used because of their localized light confinement and localized light emission, respectively. These nanoscopic colloids acquires new hybrid spectroscopic properties through their structural arrangement. To explore the energy transfer between these nanoscopic building blocks, concepts from physical optics are used and implemented with the colloidal self-assembly approach from physical chemistry. Through an established synthesis, the nanocrystals are now available in large quantities, any they receive the tailored spectroscopic properties through directed self-assembly. Moreover, the tailored properties of the colloids and the use of stimuli-responsive polymers allow a functionality that goes beyond current developments. The basics developed in this habilitation thesis can lead to novel functional devices in the field of smart sensors, dynamic light modulators, and large-area quantum devices.:1 Abstract 2
2 State of the art 4
2.1 Metallic and semiconductive nanocrystals as colloidal building blocks 4
2.2 Concept of large-scale colloidal self-assembly 7
2.3 Functional optical nanomaterials by colloidal self-assembly 9
2.4 Scope 13
2.5 References 14
3 Single colloidal cavities 20
3.1 Nanorattles with tailored electric field enhancement 20
4 Colloidal -to-film coupled cavities 31
4.1 Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces 31
4.2 Single particle spectroscopy of radiative processes in colloid-to-film-coupled nanoantennas 50
4.3 Active plasmonic colloid-to-film coupled cavities for tailored light-matter interactions 65
5 Colloidal polymers 74
5.1 Direct observation of plasmon band formation and delocalization in quasi-infinite nanoparticle chains 74
6 Colloidal lattice 84
6.1 Hybridized guided-node resonances via colloidal plasmonic self-assembled grating 84
6.2 Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly 94
6.3 Tunable Circular Dichroism by Photoluminescent Moiré Gratings 103
7 Conclusion and perspective 112
8 Appendix 113
8.1 Further publications during the habilitation period 113
8.2 Curriculum vitae of the author 116
9 Acknowledgments 117
10 Declaration 118 / Zukünftige Entwicklungen in der Nanophotonik erfordern einfache, kostengünstige und parallelisierbare Herstellungsmethoden und benötigen ein grundlegendes Verständnis der spektroskopischen Eigenschaften solcher Nanostrukturen. Diese Herausforderungen können durch kolloidale Selbstorganisation erfüllt werden, bei der kostengünstige und zuvor synthetisierte Kolloide großflächig angeordnet werden. Als sogenannte kolloide Bausteine werden wegen ihrer lokalisierten Lichtfokussierung unterhalb der Beugungsbegrenzung plasmonische Nanopartikel sowie wegen ihrer lokalisierten Lichtemission Quantenpunkte verwendet. Diese nanoskopischen Kolloide werden in dieser Habilitationsschrift verwendet und durch Selbstanordnung in ihre gewünschte Nanostruktur gebracht, die neue hybride Eigenschaften aufweist. Um den Energietransfer zwischen diesen nanoskopischen Bausteinen zu untersuchen, werden Konzepte aus der physikalischen Optik verwendet und mit dem kolloidalen Selbstorganisationskonzept aus der physikalischen Chemie großflächig umgesetzt. Durch eine etablierte Synthese sind die Nanokristalle nun in großen Mengen verfügbar, wobei sie durch gerichtete Selbstorganisation die gewünschten spektroskopischen Eigenschaften erhalten. Darüber hinaus ermöglicht die Verwendung von stimulierbaren Polymeren eine Funktionalität, die über die bisherigen Entwicklungen hinausgeht. Die in dieser Habilitationsschrift entwickelten Grundlagen können bei der Entwicklung neuartiger Funktionsgeräte im Bereich für intelligente Sensorik, dynamischer Lichtmodulatoren und großflächiger Quantengeräte genutzt werden.:1 Abstract 2
2 State of the art 4
2.1 Metallic and semiconductive nanocrystals as colloidal building blocks 4
2.2 Concept of large-scale colloidal self-assembly 7
2.3 Functional optical nanomaterials by colloidal self-assembly 9
2.4 Scope 13
2.5 References 14
3 Single colloidal cavities 20
3.1 Nanorattles with tailored electric field enhancement 20
4 Colloidal -to-film coupled cavities 31
4.1 Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces 31
4.2 Single particle spectroscopy of radiative processes in colloid-to-film-coupled nanoantennas 50
4.3 Active plasmonic colloid-to-film coupled cavities for tailored light-matter interactions 65
5 Colloidal polymers 74
5.1 Direct observation of plasmon band formation and delocalization in quasi-infinite nanoparticle chains 74
6 Colloidal lattice 84
6.1 Hybridized guided-node resonances via colloidal plasmonic self-assembled grating 84
6.2 Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly 94
6.3 Tunable Circular Dichroism by Photoluminescent Moiré Gratings 103
7 Conclusion and perspective 112
8 Appendix 113
8.1 Further publications during the habilitation period 113
8.2 Curriculum vitae of the author 116
9 Acknowledgments 117
10 Declaration 118
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:73726 |
Date | 03 February 2021 |
Creators | König, Tobias A.F. |
Contributors | Kraus, Tobias, Krahne, Roman, Fery, Andreas, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | info:eu-repo/grantAgreement/VolkswagenStiftung/Freigeist-Fellowship/92902//Unidirectional Light Propagation in Macroscopic Self-Assembled Gain-Loss Nanomaterials, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/Sachbeihilfe/404818834//Kohärenter Energietransfer in einem selbstassemblierten plasmonischen Gitter, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed)/EXC 1056//Zentrum für Perspektiven in der Elektronik Dresden/cfaed |
Page generated in 0.0027 seconds