Radio networks are expanding, becoming more advanced, and pushing the limits of what is possible. Services utilizing the radio networks are also being developed in order to provide new functionality to end-users worldwide. When discussing 5G radio networks, concepts such as driverless vehicles, drones and near zero communication delay are recurrent. However, measures of delay are needed in order to verify that such services can be provided -- and measuring this is an extensive task. Ericsson has developed a platform for simulating a radio environment surrounding a radio base station. Using this simulator, this project involved measuring one-way packet delay in a radio network, and performing a Quality of Service evaluation of a radio network with a number of network applications in concern. Application data corresponding to video streams, or Voice over IP conversations, were simulated and packet delay measurements were used to calculate and evaluate the Quality of Service provided by a radio network. One of the main conclusions of this project was that packet delay variations are asymmetric in uplink, which suggests usage of non-conventional jitter measurement techniques.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-148586 |
Date | January 2018 |
Creators | Fahlborg, Daniel |
Publisher | Linköpings universitet, Kommunikationssystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds