Spelling suggestions: "subject:"radio network"" "subject:"sadio network""
1 |
Primary User Emulation Detection in Cognitive Radio NetworksPu, Di 24 April 2013 (has links)
Cognitive radios (CRs) have been proposed as a promising solution for improving spectrum utilization via opportunistic spectrum sharing. In a CR network environment, primary (licensed) users have priority over secondary (unlicensed) users when accessing the wireless channel. Thus, if a malicious secondary user exploits this spectrum access etiquette by mimicking the spectral characteristics of a primary user, it can gain priority access to a wireless channel over other secondary users. This scenario is referred to in the literature as primary user emulation (PUE). This dissertation first covers three approaches for detecting primary user emulation attacks in cognitive radio networks, which can be classified in two categories. The first category is based on cyclostationary features, which employs a cyclostationary calculation to represent the modulation features of the user signals. The calculation results are then fed into an artificial neural network for classification. The second category is based on video processing method of action recognition in frequency domain, which includes two approaches. Both of them analyze the FFT sequences of wireless transmissions operating across a cognitive radio network environment, as well as classify their actions in the frequency domain. The first approach employs a covariance descriptor of motion-related features in the frequency domain, which is then fed into an artificial neural network for classification. The second approach is built upon the first approach, but employs a relational database system to record the motion-related feature vectors of primary users on this frequency band. When a certain transmission does not have a match record in the database, a covariance descriptor will be calculated and fed into an artificial neural network for classification. This dissertation is completed by a novel PUE detection approach which employs a distributed sensor network, where each sensor node works as an independent PUE detector. The emphasis of this work is how these nodes collaborate to obtain the final detection results for the whole network. All these proposed approaches have been validated via computer simulations as well as by experimental hardware implementations using the Universal Software Radio Peripheral (USRP) software-defined radio (SDR) platform.
|
2 |
Self-organisation in future wireless communicationsSpilling, Anders Gil January 2000 (has links)
No description available.
|
3 |
Power Allocation Based on Limited Feedback in DF Cooperative and Cognitive Radio NetworksLi, Jia-Chi 03 August 2012 (has links)
This thesis investigates cooperative communication under the framework of cognitive
radio network, which consists of primary and secondary users(PU & SU). The
cooperative and cognitive radio network (CCR) adopts overlay dynamic spectrum
access, That is, the SU simultaneously assists PU¡¦s transmission and transmits its own
message using spectrum shared by primary user. The secondary user adopts
decode-and-forward (DF) relaying to assist the primary user in transmitting message.
With secondary user¡¦s assistance, the cooperative system can be treat as an equivalent
multiple input single output (MISO) system to attain the spatial diversity of the primary
user. The virtual MISO system can reduce the outage probability and enhance the
transmission reliability. Under the requirement on primary user's transmission quality,
secondary user transmits both user¡¦s signals simultaneously, so that the secondary
acquires authority to access spectrum. Based on limited feedback regarding SNR of link
between primary transmitter and receiver, secondary user allocates transmission power
of primary signal and secondary signal to increase throughput and spectrum efficiency
of SU subject to satisfying PU¡¦s outage constraint.
|
4 |
Lifetime Maximization of Secondary Cooperative Systems in Underlay Cognitive Radio NetworksYu, Hao-Ting 30 August 2012 (has links)
In this thesis, we consider cognitive radio networks (CRN) combined with cooperative transmission, and investigate relay selection and power allocation strategies to maximize network lifetime (NLT). Cognitive radio network enhances spectrum efficiency resource by exploiting capabilities of cognition, learning and coordination against insufficient spectrum resource. In underlay cognitive radio network, however, transmitted energy of secondary user is constrained by interference level observed at primary user (PU). Though cooperation among secondary users (SU), multiple relays from virtual antenna array to improve transmission rate and reliability by exploiting spatial diversity. Most existing works assume that cooperative secondary users are plugged and with infinite energy device. In this thesis, we consider secondary cooperative systems where relays are battery-powered and with finite energy. We will investigate relay-selection schemes to reduce energy consumption of secondary relays and prolong network lifetime under the premises that secondary user¡¦s transmission rate is guaranteed and interference constraint of primary user is met. Our major difference between this work and previous works is the definition of network lifetime, which is defined by the maximum duration that the probability of secondary user¡¦s achievable rate below the guaranteed value, i.e. outage probability, is lower than a predetermined threshold. We proposed four relay-selection methods which take channel state information (CSI) and residual energy information (REI) into considerations to prolong network lifetime. Since the selection metrics of the proposed strategies requires CSI and REI of each individual relay, so the relay-selection can be accomplished in distributed manner through opportunistic sensing. No additional overhead is demanded for information exchange.
|
5 |
Joint beamforming, channel and power allocation in multi-user and multi-channel underlay MISO cognitive radio networksDadallage, Suren Tharanga Darshana 03 December 2014 (has links)
In this thesis, we consider joint beamforming, power, and channel allocation in a multi-user and multi-channel underlay cognitive radio network (CRN). In this system, beamforming is implemented at each SU-TX to minimize the co-channel interference. The formulated joint optimization problem is a non-convex, mixed integer nonlinear programming (MINLP) problem. We propose a solution which consists of two stages. At first, given a channel allocation, a feasible solutions for power and beamforming vectors are derived by converting the problem into a convex form with an introduced optimal auxiliary variable and semidefinite relaxation (SDR) approach. Next, two explicit searching algorithms, i.e., genetic algorithm (GA) and simulated annealing (SA)-based algorithm are proposed to determine optimal channel allocations. Simulation results show that beamforming, power and channel allocation with SA (BPCA-SA) algorithm achieves a close optimal sum-rate with a lower computational complexity compared with beamforming, power and channel allocation with GA (BPCA-GA) algorithm. Furthermore, our proposed allocation scheme shows significant improvement than zero-forcing beamforming (ZFBF).
|
6 |
Queueing based resource allocation in cognitive radio networksTsimba, Hilary Mutsawashe January 2017 (has links)
With the increase in wireless technology devices and mobile users, wireless radio spectrum is coming under strain. Networks are becoming more and more congested and free usable spectrum is running out. This creates a resource allocation problem. The resource, wireless spectrum, needs to be allocated to users in a manner such that it is utilised efficiently and fairly. The objective of this research is to find a solution to the resource allocation problem in radio networks, i.e to increase the efficiency of spectrum utilisation by making maximum use of the spectrum that is currently available through taking advantage of co-existence and exploiting interference limits. The solution proposed entails adding more secondary users (SU) on a cognitive radio network (CRN) and having them transmit simultaneously with the primary user. A typical network layout was defined for the scenario. The interference temperature limit (ITL) was exploited to allow multiple SUs to share capacity. Weighting was applied to the SUs and was based on allowable transmission power under the ITL. Thus a more highly weighted SU will be allowed to transmit at more power. The weighting can be determined by some network-defined rule. Specific models that define the behaviour of the network were then developed using queuing theory, specifically weighted processor sharing techniques. Optimisation was finally applied to the models to maximize system performance. Convex optimization was deployed to minimize the length of the queue through the power allocation ratio. The system was simulated and results for the system performance obtained. Firstly, the performance of the proposed models under the processor-sharing techniques was determined and discussed, with explanations given. Then optimisation was applied to the processor-sharing results and the performance was measured. In addition, the system performance was compared to other existing solutions that were deemed closest to the proposed models. / Dissertation (MEng)--University of Pretoria, 2017. / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
|
7 |
The Fast Iterative Water-Filling Power Controller For Cognitive Radio Net-WorksZhu, Jiaping 04 1900 (has links)
<p> The transmit-power control (TPC) problem is a fundamental problem in cognitive
radio design, which aims at determining transmit-power levels for secondary
users across available subcarriers. This thesis studies both the theory and the
algorithms for the TPC problem for cognitive radio networks, and specifically
examines the problem under two different limitations: an interference-power
limitation and a low-power limitation. First, the TPC problems are cast into
game-theoretic models and the sufficient and necessary optimality conditions ·for
solutions are derived. Sufficient conditions for the existence, uniqueness and stability
of a solution are presented as well. Second, the fast iterative water-filling
controller (FIWFC) for the TPC problem is developed, which is linearly convergent
under certain conditions. The computational complexity is lower than for
the iterative water-filling controller (IWFC) for digital subscriber lines. In order
to evaluate the FIWFC, simulations are carried out for both stationary and nonstationary
radio environments. In addition, the performance of the FIWFC is
evaluated, given the presence of measurement errors. The results of these various
simulations show that the FIWFC outperforms IWFC in terms of convergence
speed in all cases. </p> / Thesis / Doctor of Philosophy (PhD)
|
8 |
Performance Evaluation of Equal Gain Diversity Systems In Fading ChannelsViswanathan, Ramanathan 12 January 2004 (has links)
Next generation wireless systems are being designed to provide ubiquitous broadband link access to information infrastructure. Diversity techniques play a vital role in supporting such high speed connections over radio channels by mitigating the detrimental effects of multiuser interference and multipath fading. Equal gain combining (EGC) diversity receiver is of practical interest because of its reduced complexity relative to optimum maximal ratio combining scheme while achieving near-optimal performance. Despite this, the literature on EGC receiver performance is meager owing to difficulty in deriving the probability density function of the diversity combiner output. This problem is further compounded when the diversity paths are correlated.
Since spatial, pattern, or polarization diversity implementations at a mobile handset are usually limited to a small diversity order with closely spaced antenna elements (owing to cost and ergonomic constraints), any performance analysis must be revamped to account for the effects of branch correlation between the combined signals. This thesis presents a powerful characteristic function method for evaluating the performance of a two-branch EGC receiver in Nakagami-m channels with non-independent and non-identical fading statistics. The proposed framework facilitates efficient error probability analysis for a broad range of modulation/detection schemes in a unified manner.
The thesis also examines the efficacy of an average diversity combiner in slotted direct sequence spread-spectrum access packet radio networks. A two-dimensional EGC diversity combining scheme is introduced, wherein a corrupted packet is retained and combined with its retransmission at the bit level to produce a more reliable packet. The mathematical analysis of the average diversity combiner presented in this thesis is sufficiently general to handle generalized fading channel models with independent fading statistics for a myriad of digital modulation schemes. / Master of Science
|
9 |
Cognitive Radio Networks : Elements and ArchitecturesPopescu, Alexandru January 2014 (has links)
As mobility and computing becomes ever more pervasive in society and business, the non-optimal use of radio resources has created many new challenges for telecommunication operators. Usage patterns of modern wireless handheld devices, such as smartphones and surfboards, have indicated that the signaling traffic generated is many times larger than at a traditional laptop. Furthermore, in spite of approaching theoretical limits by, e.g., the spectral efficiency improvements brought by 4G, this is still not sufficient for many practical applications demanded by end users. Essentially, users located at the edge of a cell cannot achieve the high data throughputs promised by 4G specifications. Worst yet, the Quality of Service bottlenecks in 4G networks are expected to become a major issue over the next years given the rapid growth of mobile devices. The main problems are because of rigid mobile systems architectures with limited possibilities to reconfigure terminals and base stations depending on spectrum availability. Consequently, new solutions must be developed that coexist with legacy infrastructures and more importantly improve upon them to enable flexibility in the modes of operation. To control the intelligence required for such modes of operation, cognitive radio technology is a key concept suggested to be part of the so-called beyond 4th generation mobile networks. The basic idea is to allow unlicensed users access to licensed spectrum, under the condition that the interference perceived by the licensed users is minimal. This can be achieved with the help of devices capable of accurately sensing the spectrum occupancy, learning about temporarily unused frequency bands and able to reconfigure their transmission parameters in such a way that the spectral opportunities can be effectively exploited. Accordingly, this indicates the need for a more flexible and dynamic allocation of the spectrum resources, which requires a new approach to cognitive radio network management. Subsequently, a novel architecture designed at the application layer is suggested to manage communication in cognitive radio networks. The goal is to improve the performance in a cognitive radio network by sensing, learning, optimization and adaptation.
|
10 |
A novel MAC protocol for cognitive radio networksShah, Munam Ali January 2013 (has links)
The scarcity of bandwidth in the radio spectrum has become more vital since the demand for wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum bands and the inefficiency in their utilization have been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting transmission characteristics. In this thesis, recent research and survey about the advances in theory and applications of cognitive radio technology has been reviewed. The thesis starts with the essential background on cognitive radio techniques and systems and discusses those characteristics of CR technology, such as standards, applications and challenges that all can help make software radio more personal. It then presents advanced level material by extensively reviewing the work done so far in the area of cognitive radio networks and more specifically in medium access control (MAC) protocol of CR. The list of references will be useful to both researchers and practitioners in this area. Also, it can be adopted as a graduate-level textbook for an advanced course on wireless communication networks. The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV broadcasts and satellite has created immense demand for radio spectrum which is a limited natural resource ranging from 30KHz to 300GHz. For every wireless application, some portion of the radio spectrum needs to be purchased, and the Federal Communication Commission (FCC) allocates the spectrum for some fee for such services. This static allocation of the radio spectrum has led to various problems such as saturation in some bands, scarcity, and lack of radio resources to new wireless applications. Most of the frequencies in the radio spectrum have been allocated although many studies have shown that the allocated bands are not being used efficiently. The CR technology is one of the effective solutions to the shortage of spectrum and the inefficiency of its utilization. In this thesis, a detailed investigation on issues related to the protocol design for cognitive radio networks with particular emphasis on the MAC layer is presented. A novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies between the CR MAC protocol families of globally available common control channel (GCCC) and local control channel (non-GCCC). First, a multi-access channel MAC protocol, which integrates the best features of both GCCC and non-GCCC, is proposed. Second, an enhancement to the protocol is proposed by enabling it to access more than one control channel at the same time. The cognitive users/secondary users (SUs) always have access to one control channel and they can identify and exploit the vacant channels by dynamically switching across the different control channels. Third, rapid and efficient exchange of CR control information has been proposed to reduce delays due to the opportunistic nature of CR. We have calculated the pre-transmission time for CR and investigate how this time can have a significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, including a Markov chain model, has been proposed. This analytical model will rigorously analyse the performance of our proposed DDH-MAC protocol in terms of aggregate throughput, access delay, and spectrum opportunities in both the saturated and non-saturated networks. Fifth, we develop a simulation model for the DDH-MAC protocol using OPNET Modeler and investigate its performance for queuing delays, bit error rates, backoff slots and throughput. It could be observed from both the numerical and simulation results that when compared with existing CR MAC protocols our proposed MAC protocol can significantly improve the spectrum utilization efficiency of wireless networks. Finally, we optimize the performance of our proposed MAC protocol by incorporating multi-level security and making it energy efficient.
|
Page generated in 0.0288 seconds