• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • Tagged with
  • 20
  • 20
  • 20
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Primary User Emulation Detection in Cognitive Radio Networks

Pu, Di 24 April 2013 (has links)
Cognitive radios (CRs) have been proposed as a promising solution for improving spectrum utilization via opportunistic spectrum sharing. In a CR network environment, primary (licensed) users have priority over secondary (unlicensed) users when accessing the wireless channel. Thus, if a malicious secondary user exploits this spectrum access etiquette by mimicking the spectral characteristics of a primary user, it can gain priority access to a wireless channel over other secondary users. This scenario is referred to in the literature as primary user emulation (PUE). This dissertation first covers three approaches for detecting primary user emulation attacks in cognitive radio networks, which can be classified in two categories. The first category is based on cyclostationary features, which employs a cyclostationary calculation to represent the modulation features of the user signals. The calculation results are then fed into an artificial neural network for classification. The second category is based on video processing method of action recognition in frequency domain, which includes two approaches. Both of them analyze the FFT sequences of wireless transmissions operating across a cognitive radio network environment, as well as classify their actions in the frequency domain. The first approach employs a covariance descriptor of motion-related features in the frequency domain, which is then fed into an artificial neural network for classification. The second approach is built upon the first approach, but employs a relational database system to record the motion-related feature vectors of primary users on this frequency band. When a certain transmission does not have a match record in the database, a covariance descriptor will be calculated and fed into an artificial neural network for classification. This dissertation is completed by a novel PUE detection approach which employs a distributed sensor network, where each sensor node works as an independent PUE detector. The emphasis of this work is how these nodes collaborate to obtain the final detection results for the whole network. All these proposed approaches have been validated via computer simulations as well as by experimental hardware implementations using the Universal Software Radio Peripheral (USRP) software-defined radio (SDR) platform.
2

Power Allocation Based on Limited Feedback in DF Cooperative and Cognitive Radio Networks

Li, Jia-Chi 03 August 2012 (has links)
This thesis investigates cooperative communication under the framework of cognitive radio network, which consists of primary and secondary users(PU & SU). The cooperative and cognitive radio network (CCR) adopts overlay dynamic spectrum access, That is, the SU simultaneously assists PU¡¦s transmission and transmits its own message using spectrum shared by primary user. The secondary user adopts decode-and-forward (DF) relaying to assist the primary user in transmitting message. With secondary user¡¦s assistance, the cooperative system can be treat as an equivalent multiple input single output (MISO) system to attain the spatial diversity of the primary user. The virtual MISO system can reduce the outage probability and enhance the transmission reliability. Under the requirement on primary user's transmission quality, secondary user transmits both user¡¦s signals simultaneously, so that the secondary acquires authority to access spectrum. Based on limited feedback regarding SNR of link between primary transmitter and receiver, secondary user allocates transmission power of primary signal and secondary signal to increase throughput and spectrum efficiency of SU subject to satisfying PU¡¦s outage constraint.
3

Lifetime Maximization of Secondary Cooperative Systems in Underlay Cognitive Radio Networks

Yu, Hao-Ting 30 August 2012 (has links)
In this thesis, we consider cognitive radio networks (CRN) combined with cooperative transmission, and investigate relay selection and power allocation strategies to maximize network lifetime (NLT). Cognitive radio network enhances spectrum efficiency resource by exploiting capabilities of cognition, learning and coordination against insufficient spectrum resource. In underlay cognitive radio network, however, transmitted energy of secondary user is constrained by interference level observed at primary user (PU). Though cooperation among secondary users (SU), multiple relays from virtual antenna array to improve transmission rate and reliability by exploiting spatial diversity. Most existing works assume that cooperative secondary users are plugged and with infinite energy device. In this thesis, we consider secondary cooperative systems where relays are battery-powered and with finite energy. We will investigate relay-selection schemes to reduce energy consumption of secondary relays and prolong network lifetime under the premises that secondary user¡¦s transmission rate is guaranteed and interference constraint of primary user is met. Our major difference between this work and previous works is the definition of network lifetime, which is defined by the maximum duration that the probability of secondary user¡¦s achievable rate below the guaranteed value, i.e. outage probability, is lower than a predetermined threshold. We proposed four relay-selection methods which take channel state information (CSI) and residual energy information (REI) into considerations to prolong network lifetime. Since the selection metrics of the proposed strategies requires CSI and REI of each individual relay, so the relay-selection can be accomplished in distributed manner through opportunistic sensing. No additional overhead is demanded for information exchange.
4

Joint beamforming, channel and power allocation in multi-user and multi-channel underlay MISO cognitive radio networks

Dadallage, Suren Tharanga Darshana 03 December 2014 (has links)
In this thesis, we consider joint beamforming, power, and channel allocation in a multi-user and multi-channel underlay cognitive radio network (CRN). In this system, beamforming is implemented at each SU-TX to minimize the co-channel interference. The formulated joint optimization problem is a non-convex, mixed integer nonlinear programming (MINLP) problem. We propose a solution which consists of two stages. At first, given a channel allocation, a feasible solutions for power and beamforming vectors are derived by converting the problem into a convex form with an introduced optimal auxiliary variable and semidefinite relaxation (SDR) approach. Next, two explicit searching algorithms, i.e., genetic algorithm (GA) and simulated annealing (SA)-based algorithm are proposed to determine optimal channel allocations. Simulation results show that beamforming, power and channel allocation with SA (BPCA-SA) algorithm achieves a close optimal sum-rate with a lower computational complexity compared with beamforming, power and channel allocation with GA (BPCA-GA) algorithm. Furthermore, our proposed allocation scheme shows significant improvement than zero-forcing beamforming (ZFBF).
5

Queueing based resource allocation in cognitive radio networks

Tsimba, Hilary Mutsawashe January 2017 (has links)
With the increase in wireless technology devices and mobile users, wireless radio spectrum is coming under strain. Networks are becoming more and more congested and free usable spectrum is running out. This creates a resource allocation problem. The resource, wireless spectrum, needs to be allocated to users in a manner such that it is utilised efficiently and fairly. The objective of this research is to find a solution to the resource allocation problem in radio networks, i.e to increase the efficiency of spectrum utilisation by making maximum use of the spectrum that is currently available through taking advantage of co-existence and exploiting interference limits. The solution proposed entails adding more secondary users (SU) on a cognitive radio network (CRN) and having them transmit simultaneously with the primary user. A typical network layout was defined for the scenario. The interference temperature limit (ITL) was exploited to allow multiple SUs to share capacity. Weighting was applied to the SUs and was based on allowable transmission power under the ITL. Thus a more highly weighted SU will be allowed to transmit at more power. The weighting can be determined by some network-defined rule. Specific models that define the behaviour of the network were then developed using queuing theory, specifically weighted processor sharing techniques. Optimisation was finally applied to the models to maximize system performance. Convex optimization was deployed to minimize the length of the queue through the power allocation ratio. The system was simulated and results for the system performance obtained. Firstly, the performance of the proposed models under the processor-sharing techniques was determined and discussed, with explanations given. Then optimisation was applied to the processor-sharing results and the performance was measured. In addition, the system performance was compared to other existing solutions that were deemed closest to the proposed models. / Dissertation (MEng)--University of Pretoria, 2017. / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
6

Cognitive Radio Networks : Elements and Architectures

Popescu, Alexandru January 2014 (has links)
As mobility and computing becomes ever more pervasive in society and business, the non-optimal use of radio resources has created many new challenges for telecommunication operators. Usage patterns of modern wireless handheld devices, such as smartphones and surfboards, have indicated that the signaling traffic generated is many times larger than at a traditional laptop. Furthermore, in spite of approaching theoretical limits by, e.g., the spectral efficiency improvements brought by 4G, this is still not sufficient for many practical applications demanded by end users. Essentially, users located at the edge of a cell cannot achieve the high data throughputs promised by 4G specifications. Worst yet, the Quality of Service bottlenecks in 4G networks are expected to become a major issue over the next years given the rapid growth of mobile devices. The main problems are because of rigid mobile systems architectures with limited possibilities to reconfigure terminals and base stations depending on spectrum availability. Consequently, new solutions must be developed that coexist with legacy infrastructures and more importantly improve upon them to enable flexibility in the modes of operation. To control the intelligence required for such modes of operation, cognitive radio technology is a key concept suggested to be part of the so-called beyond 4th generation mobile networks. The basic idea is to allow unlicensed users access to licensed spectrum, under the condition that the interference perceived by the licensed users is minimal. This can be achieved with the help of devices capable of accurately sensing the spectrum occupancy, learning about temporarily unused frequency bands and able to reconfigure their transmission parameters in such a way that the spectral opportunities can be effectively exploited. Accordingly, this indicates the need for a more flexible and dynamic allocation of the spectrum resources, which requires a new approach to cognitive radio network management. Subsequently, a novel architecture designed at the application layer is suggested to manage communication in cognitive radio networks. The goal is to improve the performance in a cognitive radio network by sensing, learning, optimization and adaptation.
7

A novel MAC protocol for cognitive radio networks

Shah, Munam Ali January 2013 (has links)
The scarcity of bandwidth in the radio spectrum has become more vital since the demand for wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum bands and the inefficiency in their utilization have been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting transmission characteristics. In this thesis, recent research and survey about the advances in theory and applications of cognitive radio technology has been reviewed. The thesis starts with the essential background on cognitive radio techniques and systems and discusses those characteristics of CR technology, such as standards, applications and challenges that all can help make software radio more personal. It then presents advanced level material by extensively reviewing the work done so far in the area of cognitive radio networks and more specifically in medium access control (MAC) protocol of CR. The list of references will be useful to both researchers and practitioners in this area. Also, it can be adopted as a graduate-level textbook for an advanced course on wireless communication networks. The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV broadcasts and satellite has created immense demand for radio spectrum which is a limited natural resource ranging from 30KHz to 300GHz. For every wireless application, some portion of the radio spectrum needs to be purchased, and the Federal Communication Commission (FCC) allocates the spectrum for some fee for such services. This static allocation of the radio spectrum has led to various problems such as saturation in some bands, scarcity, and lack of radio resources to new wireless applications. Most of the frequencies in the radio spectrum have been allocated although many studies have shown that the allocated bands are not being used efficiently. The CR technology is one of the effective solutions to the shortage of spectrum and the inefficiency of its utilization. In this thesis, a detailed investigation on issues related to the protocol design for cognitive radio networks with particular emphasis on the MAC layer is presented. A novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies between the CR MAC protocol families of globally available common control channel (GCCC) and local control channel (non-GCCC). First, a multi-access channel MAC protocol, which integrates the best features of both GCCC and non-GCCC, is proposed. Second, an enhancement to the protocol is proposed by enabling it to access more than one control channel at the same time. The cognitive users/secondary users (SUs) always have access to one control channel and they can identify and exploit the vacant channels by dynamically switching across the different control channels. Third, rapid and efficient exchange of CR control information has been proposed to reduce delays due to the opportunistic nature of CR. We have calculated the pre-transmission time for CR and investigate how this time can have a significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, including a Markov chain model, has been proposed. This analytical model will rigorously analyse the performance of our proposed DDH-MAC protocol in terms of aggregate throughput, access delay, and spectrum opportunities in both the saturated and non-saturated networks. Fifth, we develop a simulation model for the DDH-MAC protocol using OPNET Modeler and investigate its performance for queuing delays, bit error rates, backoff slots and throughput. It could be observed from both the numerical and simulation results that when compared with existing CR MAC protocols our proposed MAC protocol can significantly improve the spectrum utilization efficiency of wireless networks. Finally, we optimize the performance of our proposed MAC protocol by incorporating multi-level security and making it energy efficient.
8

Spectrum Selection Technique to Satisfy the QoS Requirements in Cognitive Radio Network

Uddin, Sheikh Fakhar, Khattak, Ismail Khan January 2012 (has links)
The demand of wireless spectrum is increasing very fast as the field of telecommunication is advancing rapidly. The spectrum was underutilized because of fixed spectrum assignment policy and this valuable spectrum can be utilized efficiently by cognitive radio technology. In this thesis we have studied spectrum selection problems in cognitive radio network. Channel sharing and channel contention problems arise when multiple secondary users tend to select same channel. The thesis work is focused on spectrum selection issue with the aim to minimize the overall system time and to solve the problem of channel contention and channel sharing. The overall system time of secondary connection is an important performance measure to provide quality of service for secondary users in cognitive radio network. We studied two spectrum selection schemes that considerably reduce the overall system time and resolve the problems of channel sharing and channel contention. An analytical model associated with Preemptive Resume Priority (PRP) M/G/1 queuing model has been provided to evaluate the studied spectrum selection scheme. This model also analyzes the effect of multiple handoffs due to arrival of primary users. According to this scheme, the traffic load is distributed among multiple channels to balance the traffic load. Secondary users select the operating channels based on the spectrum selection algorithm. They can intelligently adopt better channel selection scheme by considering traffic statistics and overall transmission time. All simulation scenarios are developed in MATLAB. Based on our result we can conclude that both channel selection schemes considerably reduce the overall transmission time of secondary users in cognitive radio network. The overall transmission time increase with the rise of arrival rate of secondary user. The probability based channel selection scheme perform better with lower arrival rate and sensing based channel selection scheme perform better with higher arrival rate of secondary users. These channel selection schemes help distribute the traffic load of secondary users evenly among multiple channels. Hence, increase the channel utilization and resolve the channel contention problem.
9

Performance Analysis of Secondary Link with Cross-Layer Design and Cooperative Relay in Cognitive Radio Networks

Ma, Hao 06 1900 (has links)
In this thesis, we investigate two different system infrastructures in underlay cognitive radio network, in which two popular techniques, cross-layer design and cooperative communication, are considered, respectively. In particular, we introduce the Aggressive Adaptive Modulation and Coding (A-AMC) into the cross-layer design and achieve the optimal boundary points in closed form to choose the AMC and A-AMC transmission modes by taking into account the Channel State Information (CSI) from the secondary transmitter to both the primary receiver and the secondary receiver. What’s more, for the cooperative communication design, we consider three different relay selection schemes: Partial Relay Selection, Opportunistic Relay Selection and Threshold Relay Selection. The Probability Density Functions (PDFs) of the Signal-to- Noise Ratio (SNR) in each hop for different selection schemes are provided, and then the exact closed-form expressions for the end-to-end packet loss rate in the secondary link considering the cooperation of the Decode-and-Forward (DF) relay for different relay selection schemes are derived.
10

Efficient spectrum use in cognitive radio networks using dynamic spectrum management

Chiwewe, Tapiwa Moses January 2016 (has links)
Radiofrequency spectrum is a finite resource that consists of the frequencies in the range 3 kHz to 300 GHz. It is used for wireless communication and supports several applications and services. Whether it is at the personal, community or society level, and whether it is for applications in consumer electronics, building management, smart utility networks, intelligent driving systems, the Internet of Things, industrial automation and so on, the demand for wireless communication is increasing continuously. Together with this increase in demand, there is an increase in the quality of service requirements in terms of throughput, and the reliability and availability of wireless services. Industrial wireless sensor networks, for example, operate in environments that are usually harsh and time varying. The frequency spectrum that is utilised by industrial wireless protocols such as WirelessHART and ISA 100.11a, is also used by many other wireless technologies, and with wireless applications growing rapidly, it is possible that multiple heterogeneous wireless systems will need to operate in overlapping spatiotemporal regions in the future. Increased radiofrequency interference affects connectivity and reduces communication link quality. This affects reliability and latency negatively, both of which are core quality service requirements. Getting multiple heterogeneous radio systems to co-exist harmoniously in shared spectrum is challenging. Traditionally, this has been achieved by granting network operators exclusive rights that allow them to access parts of the spectrum assigned to them and hence the problems of co-existence and limited spectrum could be ignored. Design time multi-access techniques have also been used. At present, however, it has become necessary to use spectrum more efficiently, to facilitate the further growth of wireless communication. This can be achieved in a number of ways. Firstly, the policy that governs the regulation of radiofrequency spectrum must be updated to accommodate flexible, dynamic spectrum access. Secondly, new techniques for multiple-access and spectrum sharing should be devised. A revolutionary new communication paradigm is required, and one such paradigm has recently emerged in the form of Cognitive Radio technology. Traditional methods to sharing spectrum assume that radios in a wireless network work together in an unchanging environment. Cognitive radios, on the other hand, can sense, learn and adapt. In cognitive radio networks, the interactions between users are taken into account, in order for adjustments to be made to suit the prevailing radio environment. In this thesis, the problem of spectrum scarcity and coexistence is addressed using cognitive radio techniques, to ensure more efficient use of radio-frequency spectrum. An introduction to cognitive radio networks is given, covering cognitive radio fundamentals, spectrum sensing, dynamic spectrum management, game theoretic approaches to spectrum sharing and security in cognitive radio networks. A focus is placed on wireless industrial networks as a challenging test case for cognitive radio. A study on spectrum management policy is conducted, together with an investigation into the current state of radio-frequency spectrum utilisation, to uncover real and artificial cases of spectrum scarcity. A novel cognitive radio protocol is developed together with an open source test bed for it. Finally, a game theoretic dynamic spectrum access algorithm is developed that can provide scalable, fast convergence spectrum sharing in cognitive radio networks. This work is a humble contribution to the advancement of wireless communication. / Thesis (PhD)--University of Pretoria, 2016. / Centre for Telecommunication Engineering for the Information Society / Electrical, Electronic and Computer Engineering / PhD / Unrestricted

Page generated in 0.0766 seconds