• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Copula models with Weibull distributions : application in fading channels.

Tseng, Tzu-chiang 23 July 2009 (has links)
In this work, copula models for fitting bivariate response data with Weibull marginal distributions are studied, which are motivated by the need of model fading channels in signal applications. The analytical expressions for the joint probability density function (p.d.f.), and joint cumulative distribution function (c.d.f.) are utilized as the bivariate distribution of the fading channels data with not necessarily identical fading parameters and average powers. The performances of outage probability employing diversity receivers, called as selection combining (SC), equal-gain combining (EGC), and maximal-ratio combining (MRC) of two diversity receivers under bivariate copula models with Weibull marginal distributions are presented. They are also compared with the results in Sagias (2005) where the data assumed to follow the bivariate Weibull distribution. It will be demonstrated that the copula models can approximate the bivariate Weibull distribution used in Sagias (2005) very closely with suitable copula model, and the computations for obtaining the performances of outage probability under SC are much simplified. Keywords and phrases: equal-gain combining, maximal-ratio combining, selection combining
2

Performance Evaluation of Equal Gain Diversity Systems In Fading Channels

Viswanathan, Ramanathan 12 January 2004 (has links)
Next generation wireless systems are being designed to provide ubiquitous broadband link access to information infrastructure. Diversity techniques play a vital role in supporting such high speed connections over radio channels by mitigating the detrimental effects of multiuser interference and multipath fading. Equal gain combining (EGC) diversity receiver is of practical interest because of its reduced complexity relative to optimum maximal ratio combining scheme while achieving near-optimal performance. Despite this, the literature on EGC receiver performance is meager owing to difficulty in deriving the probability density function of the diversity combiner output. This problem is further compounded when the diversity paths are correlated. Since spatial, pattern, or polarization diversity implementations at a mobile handset are usually limited to a small diversity order with closely spaced antenna elements (owing to cost and ergonomic constraints), any performance analysis must be revamped to account for the effects of branch correlation between the combined signals. This thesis presents a powerful characteristic function method for evaluating the performance of a two-branch EGC receiver in Nakagami-m channels with non-independent and non-identical fading statistics. The proposed framework facilitates efficient error probability analysis for a broad range of modulation/detection schemes in a unified manner. The thesis also examines the efficacy of an average diversity combiner in slotted direct sequence spread-spectrum access packet radio networks. A two-dimensional EGC diversity combining scheme is introduced, wherein a corrupted packet is retained and combined with its retransmission at the bit level to produce a more reliable packet. The mathematical analysis of the average diversity combiner presented in this thesis is sufficiently general to handle generalized fading channel models with independent fading statistics for a myriad of digital modulation schemes. / Master of Science
3

Performance analysis of wireless relay systems

Vien, Hoai Nam 15 June 2010
There has been phenomenal interest in applying space-time coding techniques in wireless communications in the last two decades. In general, the benefit of applying space-time codes in multiple-input, multiple-output (MIMO) wireless channels is an increase in transmission reliability or system throughput (capacity). However, such a benefit cannot be obtained in some wireless systems where size or other constraints preclude the use of multiple antennas. As such, wireless relay communications has recently been proposed as a means to provide spatial diversity in the face of this limitation. In this approach, some users or relay nodes assist the transmission of other users information. This dissertation contributes to the advancement of wireless relay communications by investigating the performance of various relaying signal processing methods under different practical fading environments. In particular, it examines two main relaying methods, namely decode-and-forward (DF) and amplify-and-forward (AF).<p> For DF, the focus is on the diversity analysis of relaying systems under various practical protocols when detection error at relays is taken into account. In order to effectively mitigate the phenomenon of error propagation, the smart relaying technique proposed by Wang et al. in [R1] is adopted. First, diversity analysis of a single-relay system under the scenario that only the relay is allowed to transmit in the second time slot (called Protocol II) is carried out. For Nakagami and Hoyt generalized fading channels, analytical and numerical results are provided to demonstrate that the system always obtains the maximal diversity when binary phase shift keying (BPSK) modulation is used. Second, a novel and low-complexity relaying system is proposed when smart relaying and equal gain combing (EGC) techniques are combined. In the proposed system, the destination requires only the phases of the channel state information in order to detect the transmitted signals. For the single-relay system with M-ary PSK modulation, it is shown that the system can achieve the maximal diversity under Nakagami and Hoyt fading channels. For the K-relay system, simulation results suggest that the maximal diversity can also be achieved. Finally, the diversity analysis for a smart relaying system under the scenario when both the source and relay are permitted to transmit in the second time slot (referred to as Protocol I) is presented. It is shown that Protocol I can achieve the same diversity order as Protocol II for the case of 1 relay. In addition, the diversity is very robust to the quality of the feedback channel as well as the accuracy of the quantization of the power scaling implemented at the relay.<p> For AF, the dissertation considers a fixed-gain multiple-relay system with maximal ratio combining (MRC) detection at the destination under Nakagami fading channels. Different from the smart relaying for DF, all the channel state information is assumed to be available at the destination in order to perform MRC for any number of antennas. Upperbound and lowerbound on the system performance are then derived. Based on the bounds, it is shown that the system can achieve the maximal diversity. Furthermore, the tightness of the upperbound is demonstrated via simulation results. With only the statistics of all the channels available at the destination, a novel power allocation (PA) is then proposed. The proposed PA shows significant performance gain over the conventional equal PA.
4

Performance analysis of wireless relay systems

Vien, Hoai Nam 15 June 2010 (has links)
There has been phenomenal interest in applying space-time coding techniques in wireless communications in the last two decades. In general, the benefit of applying space-time codes in multiple-input, multiple-output (MIMO) wireless channels is an increase in transmission reliability or system throughput (capacity). However, such a benefit cannot be obtained in some wireless systems where size or other constraints preclude the use of multiple antennas. As such, wireless relay communications has recently been proposed as a means to provide spatial diversity in the face of this limitation. In this approach, some users or relay nodes assist the transmission of other users information. This dissertation contributes to the advancement of wireless relay communications by investigating the performance of various relaying signal processing methods under different practical fading environments. In particular, it examines two main relaying methods, namely decode-and-forward (DF) and amplify-and-forward (AF).<p> For DF, the focus is on the diversity analysis of relaying systems under various practical protocols when detection error at relays is taken into account. In order to effectively mitigate the phenomenon of error propagation, the smart relaying technique proposed by Wang et al. in [R1] is adopted. First, diversity analysis of a single-relay system under the scenario that only the relay is allowed to transmit in the second time slot (called Protocol II) is carried out. For Nakagami and Hoyt generalized fading channels, analytical and numerical results are provided to demonstrate that the system always obtains the maximal diversity when binary phase shift keying (BPSK) modulation is used. Second, a novel and low-complexity relaying system is proposed when smart relaying and equal gain combing (EGC) techniques are combined. In the proposed system, the destination requires only the phases of the channel state information in order to detect the transmitted signals. For the single-relay system with M-ary PSK modulation, it is shown that the system can achieve the maximal diversity under Nakagami and Hoyt fading channels. For the K-relay system, simulation results suggest that the maximal diversity can also be achieved. Finally, the diversity analysis for a smart relaying system under the scenario when both the source and relay are permitted to transmit in the second time slot (referred to as Protocol I) is presented. It is shown that Protocol I can achieve the same diversity order as Protocol II for the case of 1 relay. In addition, the diversity is very robust to the quality of the feedback channel as well as the accuracy of the quantization of the power scaling implemented at the relay.<p> For AF, the dissertation considers a fixed-gain multiple-relay system with maximal ratio combining (MRC) detection at the destination under Nakagami fading channels. Different from the smart relaying for DF, all the channel state information is assumed to be available at the destination in order to perform MRC for any number of antennas. Upperbound and lowerbound on the system performance are then derived. Based on the bounds, it is shown that the system can achieve the maximal diversity. Furthermore, the tightness of the upperbound is demonstrated via simulation results. With only the statistics of all the channels available at the destination, a novel power allocation (PA) is then proposed. The proposed PA shows significant performance gain over the conventional equal PA.
5

Performance Analysis of Diversity Techniques for Wireless Communication System

ISLAM, MD. JAHERUL January 2012 (has links)
Different diversity techniques such as Maximal-Ratio Combining (MRC), Equal-Gain Combining (EGC) and Selection Combining (SC) are described and analyzed. Two branches (N=2) diversity systems that are used for pre-detection combining have been investigated and computed. The statistics of carrier to noise ratio (CNR) and carrier to interference ratio (CIR) without diversity assuming Rayleigh fading model have been examined and then measured for diversity systems. The probability of error (p_e) vs CNR and (p_e) versus CIR have also been obtained. The fading dynamic range of the instantaneous CNR and CIR is reduced remarkably when diversity systems are used [1]. For a certain average probability of error, a higher valued average CNR and CIR is in need for non-diversity systems [1]. But a smaller valued of CNR and CIR are compared to diversity systems. The overall conclusion is that maximal-ratio combining (MRC) achieves the best performance improvement compared to other combining methods. Diversity techniques are very useful to improve the performance of high speed wireless channel to transmit data and information. The problems which considered in this thesis are not new but I have tried to organize, prove and analyze in new ways.
6

Μέθοδοι και τεχνικές βελτιστοποίησης της απόδοσης των ψηφιακών ασύρματων συστημάτων λειτουργούντων σε περιβάλλον με διαλείψεις / Methods and techniques for the performance evaluation of digital wireless telecommunication systems operating over fading channels

Ζώγας, Δημήτριος 25 June 2007 (has links)
Η χρήση διαφορισμού σε συστήματα κινητών επικοινωνιών είναι μία ευρέως χρησιμοποιούμενη τεχνική για την καταπολέμηση των διαλείψεων που παρατηρούνται στις ραδιοζεύξεις. Στην παρούσα διατριβή παρουσιάζονται διάφοροι τρόποι και τεχνικές για την μελέτη της απόδοσης συστημάτων που κάνουν χρήση διαφορισμού στον δέκτη. Οι τεχνικές διαφορισμού που μελετώνται είναι ο διαφορισμός ίσου κέρδους (equal-gain combining) και ο διαφορισμός επιλογής (selection combining). Επιπλέον, στα πλαίσια της διατριβής αυτής, υποθέτουμε ότι ο δέκτης λειτουργεί σε κανάλια μη-επιλεκτικών συχνοτήτων με βραδείες διαλείψεις (flat and slow fading channels), ενώ το εκπεμπόμενο σήμα υφίσταται διαλείψεις κατά Rayleigh, Nakagami-m, Rice ή Hoyt. Αποδεικνύεται ότι η απόδοση του συστήματος στο οποίο ο δέκτης κάνει χρήση διαφορισμού εξαρτάται σε μεγάλο βαθμό από: • τη συσχέτιση μεταξύ των καναλιών διαφορισμού και • τη διαφορά της ισχύος μεταξύ των καναλιών διαφορισμού. Για να μελετηθεί η απόδοση ενός ΔΕ που λειτουργεί σε συσχετισμένα Nakagami-m κανάλια παρουσιάζεται παρουσιάζονται για πρώτη φορά σε κλειστή μορφή η συνάρτηση πυκνότητας πιθανότητας (ΣΠΠ) Nakagami-m μεταβλητών με εκθετική συσχέτιση, ενώ η αντίστοιχη συνάρτηση αθροιστικής κατανομής (ΣΑΚ) που προκύπτει έχει τη μορφή πολλαπλών άπειρων αθροισμάτων. / Diversity reception has been successfully used in wireless communications systems to mitigate the negative effect of channel fading. This thesis deals with the performance analysis of wireless systems employing receiver diversity. The diversity schemes studied are selection combining (SC) and equal-gain combining (EGC). We assume that the receiver operates in flat and slow fading channels and that the signal undergoes Rayleigh, Nakagami-m, Rice or Hoyt fading. As it will be shown, the performance of the diversity system depends greatly on: • the correlation among the diversity branches, • the average power imbalance of the received signals In order to study the performance of a SC receiver operating in correlated Nakagami-m fading channels, we first present a statistical analysis of correlated Nakagami-m random variables (rvs). The probability density function (pdf) of exponentially correlated Nakagami-m rvs is presented in closed-form, while the corresponding cumulative distribution function (cdf) has the form of multiple converging infinite series. Furthermore, bounds for the truncation of the infinite series.
7

The Application of Multiuser Detection to Spectrally Efficient MIMO or Virtual MIMO SC-FDMA Uplinks in LTE Systems.

Ben Salem, Aymen 20 December 2013 (has links)
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a multiple access transmission scheme that has been adopted in the 4th generation 3GPP Long Term Evolution (LTE) of cellular systems. In fact, its relatively low peak-to-average power ratio (PAPR) makes it ideal for the uplink transmission where the transmit power efficiency is of paramount importance. Multiple access among users is made possible by assigning different users to different sets of non-overlapping subcarriers. With the current LTE specifications, if an SC-FDMA system is operating at its full capacity and a new user requests channel access, the system redistributes the subcarriers in such a way that it can accommodate all of the users. Having less subcarriers for transmission, every user has to increase its modulation order (for example from QPSK to 16QAM) in order to keep the same transmission rate. However, increasing the modulation order is not always possible in practice and may introduce considerable complexity to the system. The technique presented in this thesis report describes a new way of adding more users to an SC-FDMA system by assigning the same sets of subcarriers to different users. The main advantage of this technique is that it allows the system to accommodate more users than conventional SC-FDMA and this corresponds to increasing the spectral efficiency without requiring a higher modulation order or using more bandwidth. During this work, special attentions wee paid to the cases where two and three source signals are being transmitted on the same set of subcarriers, which leads respectively to doubling and tripling the spectral efficiency. Simulation results show that by using the proposed technique, it is possible to add more users to any SC-FDMA system without increasing the bandwidth or the modulation order while keeping the same performance in terms of bit error rate (BER) as the conventional SC-FDMA. This is realized by slightly increasing the energy per bit to noise power spectral density ratio (Eb/N0) at the transmitters.
8

The Application of Multiuser Detection to Spectrally Efficient MIMO or Virtual MIMO SC-FDMA Uplinks in LTE Systems.

Ben Salem, Aymen January 2014 (has links)
Single Carrier Frequency Division Multiple Access (SC-FDMA) is a multiple access transmission scheme that has been adopted in the 4th generation 3GPP Long Term Evolution (LTE) of cellular systems. In fact, its relatively low peak-to-average power ratio (PAPR) makes it ideal for the uplink transmission where the transmit power efficiency is of paramount importance. Multiple access among users is made possible by assigning different users to different sets of non-overlapping subcarriers. With the current LTE specifications, if an SC-FDMA system is operating at its full capacity and a new user requests channel access, the system redistributes the subcarriers in such a way that it can accommodate all of the users. Having less subcarriers for transmission, every user has to increase its modulation order (for example from QPSK to 16QAM) in order to keep the same transmission rate. However, increasing the modulation order is not always possible in practice and may introduce considerable complexity to the system. The technique presented in this thesis report describes a new way of adding more users to an SC-FDMA system by assigning the same sets of subcarriers to different users. The main advantage of this technique is that it allows the system to accommodate more users than conventional SC-FDMA and this corresponds to increasing the spectral efficiency without requiring a higher modulation order or using more bandwidth. During this work, special attentions wee paid to the cases where two and three source signals are being transmitted on the same set of subcarriers, which leads respectively to doubling and tripling the spectral efficiency. Simulation results show that by using the proposed technique, it is possible to add more users to any SC-FDMA system without increasing the bandwidth or the modulation order while keeping the same performance in terms of bit error rate (BER) as the conventional SC-FDMA. This is realized by slightly increasing the energy per bit to noise power spectral density ratio (Eb/N0) at the transmitters.

Page generated in 0.0664 seconds