• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 13
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Near-Optimal and Efficiently Parallelizable Detector for Multiple-Input Multiple-Output Wireless Systems

Pankeu Yomi, Arsene Fourier Unknown Date
No description available.
2

Complexité et Performance des Récepteurs MIMO

Bazdresch Sierra, Luis Miguel 12 1900 (has links) (PDF)
Le codage espace-temps est une technique qui permet d'exploiter de façon très efficace la diversité spatiale et temporelle présente dans certains systèmes de communication, dont le canal sans fil. Le principal avantage de cette technique est une très grande efficacité spectrale. Dans nos jours, où le canal radio-mobile est de plus en plus utilisé pour transmettre tout type d'information, les méthodes permettant une utilisation plus efficace du spectre électromagnétique ont une importance fondamentale. Les algorithmes de réception connus aujourd'hui sont très complexes, même en ce qui concerne les codes espace-temps les plus simples. Cette complexité reste l'un des obstacles principaux à l'exploitation commerciale de ces codes. Cette thèse présente une étude très détaillée de la complexité, la performance, et les aspects les plus intéressants du comportement des algorithmes de réception pour des codes espace-temps, étude qui présente un moyen rapide pour une éventuelle conception des architectures adaptées à ce problème. Parmi les sujets présentés dans cette thèse, une étude approfondie de la performance de ces algorithmes a été réalisée, ayant pour objectif d'avoir une connaisance suffisante pour pouvoir choisir, parmi le grand nombre d'algorithmes connus, le mieux adapté à chaque système particulier. Des améliorations aux algorithmes connus ont aussi été proposées et analysées.
3

Receiver Design for Massive MIMO

Alnajjar, Khawla January 2015 (has links)
Massive multiple-input-multiple-output (MM) is becoming a promising candidate for wireless communications. The idea behind MM is to use a very large number of antennas to increase throughput and energy efficiency by one or more orders of magnitude. In order to make MM feasible, many challenges remain. In the uplink a fundamental question is whether to deploy single massive arrays or to build a virtual array using cooperative base stations. Also, in such large arrays the signal processing involved in receiver combining is non-trivial. Therefore, low complexity receiver designs and deployment scenarios are essential aspects of MM and the thesis mainly focuses on these two areas. In the first part, we investigate three deployment scenarios: (i) a massive co-located array at the cell center; (ii) a massive array clustered at B discrete locations; and (iii) a massive distributed array with a uniform distribution of individual antennae. We also study the effect of propagation parameters, system size, correlation and channel estimation error. We demonstrate by analysis and simulation that in the absence of any system imperfections, a massive distributed array is preferable. However, an intermediate deployment such as a massive array clustered at a few discrete locations can be more practical to implement and more robust to imperfect channel state information. We then focus on the performance of the co-located scenario with different types of antenna array, uniform square and linear arrays. With MM, it may be the case that large numbers of antennas are closely packed to fit in some available space. Hence, channel correlations become important and therefore we investigate the space requirements of different array shapes. In particular, we evaluate the system performance of uniform square and linear arrays by using ergodic capacity and capacity outage. For a range of correlation models, we demonstrate that the uniform square array can yield similar performance to a uniform linear array while providing considerable space saving. In the second part of the thesis we focus on low complexity receiver designs. Due to the high dimension of MM systems there is a considerable interest in detection schemes with a better complexity-performance trade-off. We focus on linear receivers (zero forcing (ZF) and maximum ratio combining (MRC)) used in conjuction with a Vertical Bell Laboratories Layered Space Time (V-BLAST) structure. Our first results show that the performance of MRC V-BLAST approaches that of ZF V-BLAST under a range of imperfect CSI levels, different channel powers and different types of arrays as long as the channel correlations are not too high. Subsequently, we propose novel low complexity receiver designs which maintain the same performance as ZF or ZF V-BLAST. We show that the performance loss of MRC relative to ZF can be removed in certain situations through the use of V-BLAST. The low complexity ordering scheme based on the channel norm (C-V-BLAST) results in a V-BLAST scheme with MRC that has much less complexity than a single ZF linear combiner. An analysis of the SINR at each stage of the V-BLAST approach is also given to support the findings of the proposed technique. We also show that C-V-BLAST remains similar to ZF for more complex adaptive modulation systems and in the presence of channel estimation error, C-V-BLAST can be superior. These results are analytically justified and we derive an exhaustive search algorithm for power control (PC) to bound the potential gains of PC. Using this bound, we demonstrate that C-V-BLAST performs well without the need for additional PC. The final simplification is based on the idea of ordering users based on large scale fading information rather than instantaneous channel knowledge for a V-BLAST scheme with MRC (P-V-BLAST). An explicit closed form analysis for error probability for both co-located and distributed BSs is provided along with a number of novel performance metrics which are useful in designing MM systems. It is shown that the error performance of the distributed scenario can be well approximated by a modified version of a co-located scenario. Another potential advantage of P-V-BLAST is that the ordering can be obtained as soon as the link gains are available. Hence, it is possible that mean SINR values could be used for scheduling and other link control functions. These mean values are solely functions of the link gains and hence, scheduling, power adaptation, rate adaptation, etc. can all be performed more rapidly with P-V-BLAST. Hence, the P-V-BLAST structure may have further advantages beyond a lower complexity compared to C-V-BLAST.
4

Iterative Channel Estimation for Wireless Communications

Kim, JoonBeom 20 November 2006 (has links)
The main objective of this dissertation is to present the structural design, performance evaluation, and complexity reduction of iterative joint channel estimation and data detection receivers. One of the main technical challenges in advanced wireless communications stems from the characteristics of a wireless channel, e.g., time selectivity of a channel, mobility of users, and multipath propagation. Channel estimation is essential for achieving reliable information transmission for practical wireless communication applications. Numerous channel estimation structures have been developed for different underlying channels using pilot-symbol assisted modulation (PSAM) approaches. However, since pilot symbols carry no data information, the time and the power spent on pilot symbols degrades the efficiency and the throughput of the system. Therefore, it is necessary to minimize the pilot insertion ratio without degrading the error performance. This motivates our research on iterative joint channel estimation and data detection receivers with full- and reduced- or low-complexity. In this thesis, we first propose an iterative channel estimator (ICE), based on a maximum a posteriori (MAP) algorithm, for single-carrier systems with PSAM structures. In contrast to existing MAP channel estimators, the proposed channel estimator has a lower computational complexity, which increases linearly with the modulation alphabet size. The computational complexity is reduced by exploiting a survivor in an efficient manner, while achieving comparable error performance to a full complexity receiver. For orthogonal frequency division multiplexing (OFDM) systems, we also propose novel signal constellations to facilitate channel estimation without pilot symbol transmission, and analyze the bit error rate for the proposed constellations. We also develop a suitable joint channel estimation and data detector with full- and low-complexity for the proposed constellations. This low-complexity ICE achieves an error performance comparable to the ICE with full-complexity. Finally, for vertical Bell Laboratories layered space-time OFDM systems, we propose an ICE based on a PSAM structure for time-varying multipath fading channels. By exploiting the statistical properties of a wireless channel, we also develop a method to suppress intercarrier interference due to the channel time selectivity, and propose a low-complexity ICE that exploits a priori information in an efficient manner.
5

Channel Estimation Strategies for Coded MIMO Systems

Trepkowski, Rose E. 17 August 2004 (has links)
High transmission data rate, spectral efficiency, and reliability are necessary for future wireless communications systems. In a multipath-rich wireless channel, deploying multiple antennas at both the transmitter and receiver achieves high data rate, without increasing the total transmission power or bandwidth. When perfect knowledge of the wireless channel conditions is available at the receiver, the capacity has been shown to grow linearly with the number of antennas. However, the channel conditions must be estimated since perfect channel knowledge is never known a priori. In practice, the channel estimation procedure can be aided by transmitting pilot symbols that are known at the receiver. System performance depends on the quality of channel estimate, and the number of pilot symbols. It is desirable to limit the number of transmitted pilot symbols because pilot symbols reduce spectral efficiency. This thesis analyzes the system performance of coded multiple-input multiple-output (MIMO) systems for the quasi-static fading channel. The assumption that perfect channel knowledge is available at the receiver must be removed, in order to more accurately examine the system performance. Emphasis is placed on developing channel estimation strategies for an iterative Vertical Bell-Labs Layered Space Time (V-BLAST) architecture. The channel estimate can be sequentially improved between successive iterations of the iterative V-BLAST algorithm. For both the coded and uncoded systems, at high signal to noise ratio only a minimum number of pilot symbols per transmit antenna are required to achieve perfect channel knowledge performance. / Master of Science
6

Performance evaluation of ZF and MMSE equalizers for wavelets V-Blast

Asif, Rameez, Bin-Melha, Mohammed S., Hussaini, Abubakar S., Abd-Alhameed, Raed, Jones, Steven M.R., Noras, James M., Rodriguez, Jonathan January 2013 (has links)
No / In this work we present the work on the equalization algorithms to be used in future orthogonally multiplexed wavelets based multi signaling communication systems. The performance of ZF and MMSE algorithms has been analyzed using SISO and MIMO communication models. The transmitted electromagnetic waves were subjected through Rayleigh multipath fading channel with AWGN. The results showed that the performance of both of the above mentioned algorithms is the same in SISO channel but in MIMO environment MMSE has better performance.
7

Optimum Ordering for Coded V-BLAST

Uriarte Toboso, Alain 16 November 2012 (has links)
The optimum ordering strategies for the coded V-BLAST system with capacity achieving temporal codes on each stream are studied in this thesis. Mathematical representations of the optimum detection ordering strategies for the coded V-BLAST under instantaneous rate allocation (IRA), uniform power/rate allocation (URA), instantaneous power allocation(IPA) and instantaneous power/rate allocation (IPRA) are derived. For two transmit antennas, it is shown that the optimum detection strategies are based on the per-stream before-processing channel gains. Based on approximations of the per-stream capacity equation, closed-form expressions of the optimal ordering strategy under the IRA at low and high signal to noise ratio (SNR) are derived. Necessary optimality conditions under the IRA are given. Thresholds for the low, intermediate and high SNR regimes in the 2-Tx-antenna system under the IPRA are determined, and the SNR gain of the ordering is studied for each regime. Performances of simple suboptimal ordering strategies are analysed, some of which perform very close to the optimum one.
8

Optimum Ordering for Coded V-BLAST

Uriarte Toboso, Alain 16 November 2012 (has links)
The optimum ordering strategies for the coded V-BLAST system with capacity achieving temporal codes on each stream are studied in this thesis. Mathematical representations of the optimum detection ordering strategies for the coded V-BLAST under instantaneous rate allocation (IRA), uniform power/rate allocation (URA), instantaneous power allocation(IPA) and instantaneous power/rate allocation (IPRA) are derived. For two transmit antennas, it is shown that the optimum detection strategies are based on the per-stream before-processing channel gains. Based on approximations of the per-stream capacity equation, closed-form expressions of the optimal ordering strategy under the IRA at low and high signal to noise ratio (SNR) are derived. Necessary optimality conditions under the IRA are given. Thresholds for the low, intermediate and high SNR regimes in the 2-Tx-antenna system under the IPRA are determined, and the SNR gain of the ordering is studied for each regime. Performances of simple suboptimal ordering strategies are analysed, some of which perform very close to the optimum one.
9

Optimum Ordering for Coded V-BLAST

Uriarte Toboso, Alain January 2012 (has links)
The optimum ordering strategies for the coded V-BLAST system with capacity achieving temporal codes on each stream are studied in this thesis. Mathematical representations of the optimum detection ordering strategies for the coded V-BLAST under instantaneous rate allocation (IRA), uniform power/rate allocation (URA), instantaneous power allocation(IPA) and instantaneous power/rate allocation (IPRA) are derived. For two transmit antennas, it is shown that the optimum detection strategies are based on the per-stream before-processing channel gains. Based on approximations of the per-stream capacity equation, closed-form expressions of the optimal ordering strategy under the IRA at low and high signal to noise ratio (SNR) are derived. Necessary optimality conditions under the IRA are given. Thresholds for the low, intermediate and high SNR regimes in the 2-Tx-antenna system under the IPRA are determined, and the SNR gain of the ordering is studied for each regime. Performances of simple suboptimal ordering strategies are analysed, some of which perform very close to the optimum one.
10

Algoritmos paralelos segmentados para los problemas de mínimos cuadrados recursivos (RLS) y de detección por cancelación ordenada y sucesiva de interferencia (OSIC)

Martínez Zaldívar, Francisco José 06 May 2008 (has links)
Dentro del marco de los sistemas de comunicaciones de banda ancha podemos encontrar canales modelados como sistemas MIMO (Multiple Input Multiple Output) en el que se utilizan varias antenas en el transmisor (entradas) y varias antenas en el receptor (salidas), o bien sistemas de un solo canal que puede ser modelado como los anteriores (sistemas multi-portadora o multicanal con interferencia entre ellas, sistemas multi-usuario con una o varias antenas por terminal móvil y sistemas de comunicaciones ópticas sobre fibra multimodo). Estos sistemas pretenden alcanzar valores de capacidad de transmisión relativa al ancho de banda muy superiores al de un único canal SISO (Single Input Single Output). Hoy en dÍa, existe, desde un punto de vista de implementación del sistema, una gran actividad investigadora dedicada al desarrollo de algoritmos de codificación, ecualización y detección, muchos de ellos de gran complejidad, que ayuden a aproximarse a las capacidades prometidas. En el aspecto relativo a la detección, las soluciones actuales se pueden clasificar en tres tipos: soluciones subóptimas, ML (Maximum Likelihood) o cuasi-ML e iterativas. En estas ultimas, se hace uso explicito de técnicas de control de errores empleando intercambio de información soft o indecisa entre el detector y el decodificador; en las soluciones ML o cuasi-ML se lleva a cabo una búsqueda en árbol que puede ser optimizada llegando a alcanzar complejidades polinómicas en cierto margen de relación señal-ruido; por ultimo dentro de las soluciones subóptimas destacan las técnicas de forzado de ceros, error cuadrático medio y cancelación sucesiva de interferencias SIC (Succesive Interference Cancellation), esta última con una versión ordenada -OSIC-. Las soluciones subóptimas, aunque no llegan al rendimiento de las ML o cuasi-ML son capaces de proporcionar la solución en tiempo polinómico de manera determinista. En la presente tesis doctoral, hemos implementado un método basado en la literatura para l / Martínez Zaldívar, FJ. (2007). Algoritmos paralelos segmentados para los problemas de mínimos cuadrados recursivos (RLS) y de detección por cancelación ordenada y sucesiva de interferencia (OSIC) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1873 / Palancia

Page generated in 0.0276 seconds