Return to search

Quantificação de forças na manipulação de nano-objetos individuais em experimentos "in situ" de microscopia eletrônica / Quantification of forces on the manipulation of individual nano-objects in "in situ" experiments of electron microscopy

Orientador: Daniel Mario Ugarte / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-15T02:39:35Z (GMT). No. of bitstreams: 1
Oiko_VitorToshiyukiAbrao_M.pdf: 7596860 bytes, checksum: c9ed7c1eff25bf830795b90b88bdc6fa (MD5)
Previous issue date: 2010 / Resumo: O estudo de nano-sistemas tem atraído grande atenção nos últimos anos, principalmente devido às suas possíveis e novas aplicações tecnológicas. Muitos esforços têm sido feitos nessa área, porém há ainda várias questões em aberto com relação à compreensão de nanoestruturas. Um dos principais desafios diz respeito à manipulação e o posicionamento controlado de nano-objetos, juntamente com a quantificação das forças envolvidas e a caracterização das propriedades mecânicas em nanoescala. Muitos avanços foram atingidos com a combinação de técnicas de microscopia de força atômica (AFM). Infelizmente nestes experimentos o sensor de forças também é utilizado para gerar uma imagem da amostra. Assim não é possível visualizar o nano-sistema ao mesmo tempo em que ele é submetido a algum esforço mecânico. Outros experimentos são realizados in situ em microscópios eletrônicos onde são utilizados porta-amostras especiais com sensores de força de microscópios de AFM.Combina-se dessa forma a capacidade de se observar diretamente o nano-sistema com a de aplicar e medir forças em sistemas nanométricos. Nesta dissertação é estudada então uma alternativa para a fabricação de um sensor de forças baseado no uso de diapasões de quartzo (tuning forks). Esse sensor deverá ser utilizado em experimentos de nanomanipulação. Este projeto abordou todos os aspectos necessários à instrumentação, desenho, construção e implementação do sensor. O sensor foi acoplado a um nanomanipulador que opera dentro de um microscópio eletrônico de varredura de alta resolução. Com essa montagem, realizaram-se experimentos preliminares de manipulação e deformação de nanofios semicondutores (InP, de alguns mícrons de comprimento, e de 50-200 nm de diamêtro). As forças foram quantificadas baseando-se nas imagens de microscopia dos fios sendo deformados e utilizando um modelo teórico de deformações elásticas. Esses valores foram correlacionados com as variações das curvas de ressonância do tuning fork, para finalmente obter a calibração do sensor de forças. O sistema permite medir forças com uma sensibilidade de 0:5m N baseando-se somente nas mudanças dos sinais elétricos utilizados para alimentar o diapasão de quartzo / Abstract: The study of nanosystems has attracted great attention in recent years, mainly due to their novel possible technological applications. Many efforts have been made in this area, however there are still several open questions concerning the comprehension of such systems. One of the biggest challenges is the manipulation and the controlled positioning of nano-objects, together with the quantification of the forces involved and the mechanical characterization at the nanoscale. Many advances have been achieved with the combination of atomic force microscopy (AFM) techniques. Unfortunately, in these experiments the force sensor is also applied to generate the sample's images. It doesn't allow the system's visualization simultaneously with the stress application. Other experiments are performed in situ electron microscopes where special sample-holders with AFM cantilevers are used. It combines then the ability of observing the nanosystem directly to the possibility of applying and measuring forces in nanometric scale. In this dissertation it is studied an alternative to the fabrication of a force sensor based on quartz tuning forks. This sensor will be used on nanomanipulation experiments. The project covered all the aspects necessary to the sensor's instrumentation, design, construction and implementation. The sensor was attached to a nanomanipulator that operates inside a high resolution scanning electron microscope. Semiconductor nanowires (InP, a few microns in length and 50-200nm in diameter) were manipulated and deformed with this experimental setup. The force quantification was based on microscopy images of the deformed nanowires and on theoretical model of elastic deformations. The force values were correlated with the variations of tuning fork's resonant curves in order to obtain a calibration curve for the sensor. Sensitivity of 0:5m N were achieved based only on changes on electrical signals fed to the quartz tuning fork / Mestrado / Física da Matéria Condensada / Mestre em Física

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/277616
Date15 August 2018
CreatorsOiko, Vitor Toshiyuki Abrão, 1986-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Ugarte, Daniel Mário, 1963-, Santos, Antonio Domingues dos, Alvarez, Fernando
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Física Gleb Wataghin, Programa de Pós-Graduação em Física
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format69 f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds