Les travaux effectués dans le cadre de cette thèse « Analyse de robustesse par contraintes intégrales quadratiques - Application aux lanceurs spatiaux » ont été menés en collaboration entre le Département Automatique de Supélec, EADS Astrium ST, l’Agence Spatiale Européenne (ESA) et l’université de Stuttgart. Le but était d’adapter et d’utiliser des méthodes analytiques de validation de loi de commande d'un lanceur en phase balistique pour améliorer les résultats obtenus par l’approche probabiliste fondée sur des simulations, technique actuellement majoritaire dans l’industrie. Dans ce cadre, l’utilisation des contraintes intégrales quadratiques (IQC) a permis de caractériser la stabilité et la performance robuste de la loi de commande d’un modèle représentatif du lanceur. Nous avons étudié l’influence de la dynamique non-linéaire des lanceurs sur la stabilité et la performance robuste. Dans ce cadre, nous avons factorisé les équations du mouvement en prenant en compte les incertitudes de la matrice d’inertie ainsi que les couplages gyroscopiques. Le second axe traita de l’influence des actionneurs de type modulateur de largeur impulsions (PWM) sur la stabilité du système par deux études IQC. La conclusion de ces travaux de thèse met l’accent sur l’importance de l’utilisation de méthodes analytiques dans le domaine spatial. Ces méthodes permettent l’obtention de garanties rigoureuses de stabilité et de performance des systèmes. De plus, toutes les méthodes d’analyse possèdent leur extension pour la synthèse de correcteurs robustes. Ainsi on imagine aisément l’immense gain que pourrait produire l’utilisation de ces méthodes pour la synthèse de correcteurs robustes. / The introduction of analytical techniques along the steps of the development of a space launcher will allow significant reductions in terms of costs and manpower, and will enable, by a more systematical way of tuning and assessing control laws, to get flyable designs much faster. In this scope, IQC based tools already present promising result and show that they may be the most appropriate ones for the robustness analysis of large complex systems. They account for the system structure and allow dealing specifically with each subsystems, it means that we can improve the representation contained in the multipliers easily and reuse the set up to assess the improvements. The flexibility of the method is a huge advantage. We experienced it during two phases. The first was dedicated to the analysis of the three-degree-of-freedom uncertain nonlinear equation of motion of a rigid body. Secondly, we studied the influence of the pulse-width modulator behavior of the attitude control system on the launcher stability. IQC-based stability analysis allowed defining estimations of the stability domain with respect to uncertainties and system parameters. Moreover, the results obtained with IQC can go way beyond stability analysis with performance analysis with description of the particular performance criteria of the field with appropriate multipliers. Later on controller synthesis and merging of IQC method with worst-case search algorithms could extend greatly the frame of use of this analytical tool and give it the influence it deserves.
Identifer | oai:union.ndltd.org:theses.fr/2013SUPL0029 |
Date | 04 December 2013 |
Creators | Chaudenson, Julien |
Contributors | Supélec, Sandou, Guillaume |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds