Nous nous intéressons dans cette thèse à la résolution du problème de tournées sélectives (Team Orienteering Problem - TOP) et ses variantes. Ce problème est une extension du problème de tournées de véhicules en imposan tcertaines limitations de ressources. Nous proposons un algorithme de résolution exacte basé sur la programmation linéaire en nombres entiers (PLNE) en ajoutant plusieurs inégalités valides capables d’accélérer la résolution. D’autre part, en considérant des périodes de travail strictes pour chaque véhicule durant sa tournée, nous traitons une des variantes du TOP qui est le problème de tournées sélectives multipériodique (multiperiod TOP - mTOP) pour lequel nous développons une métaheuristique basée sur l’optimisation par essaim pour le résoudre. Un découpage optimal est proposé pour extraire la solution optimale de chaque particule en considérant les tournées saturées et pseudo saturées .Finalement, afin de prendre en considération la disponibilité des clients, une fenêtre de temps est associée à chacun d’entre eux, durant laquelle ils doivent être servis. La variante qui en résulte est le problème de tournées sélectives avec fenêtres de temps (TOP with Time Windows - TOPTW). Deux algorithmes exacts sont proposés pour résoudre ce problème. Le premier est basé sur la génération de colonnes et le deuxième sur la PLNE à laquelle nous ajoutons plusieurs coupes spécifiques à ce problème. / We focus in this thesis on developing new algorithms to solve the Team Orienteering Problem (TOP) and two of its variants. This problem derives from the well-known vehicle routing problem by imposing some resource limitations .We propose an exact method based on Mixed Integer Linear Programming (MILP) to solve this problem by adding valid inequalities to speed up its solution process. Then, by considering strict working periods for each vehicle during its route, we treat one of the variants of TOP, which is the multi-period TOP (mTOP) for which we develop a metaheuristic based on the particle swarm optimization approach to solve it. An optimal split procedure is proposed to extract the optimal solution from each particle by considering saturated and pseudo-saturated routes. Finally, in order to take into consideration the availability of customers, a time window is associated with each of them, during which they must be served. The resulting variant is the TOP with Time Windows (TOPTW). Two exact algorithms are proposed to solve this problem. The first algorithm is based on column generation approach and the second one on the MILP to which we add additional cuts specific for this problem. The comparison between our exact and heuristic methods with the existing one in the literature shows the effectiveness of our approaches.
Identifer | oai:union.ndltd.org:theses.fr/2015COMP2192 |
Date | 12 June 2015 |
Creators | El-Hajj, Racha |
Contributors | Compiègne, Université libanaise, Chebaro, Bilal, Moukrim, Aziz |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds