Return to search

The Application of Synthetic Signals for ECG Beat Classification

A brief overview of electrocardiogram (ECG) properties and the characteristics of various cardiac conditions is given. Two different models are used to generate synthetic ECG signals. Domain knowledge is used to create synthetic examples of 16 different heart beat types with these models. Other techniques for synthesizing ECG signals are explored. Various machine learning models with different combinations of real and synthetic data are used to classify individual heart beats. The performance of the different methods and models are compared, and synthetic data is shown to be useful in beat classification.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-9116
Date01 September 2019
CreatorsBrown, Elliot Morgan
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0023 seconds