Fault detection is a key component to minimizing service unavailability. Fault detection is generally handled by a monitoring system. This project investigates the possibility of extending an existing monitoring system to alert based on anomalous patterns in time series.The project was broken up into two areas. The first area conducted an investigation whether it is possible to alert based on anomalous patterns in time series. A hypothesis was formed as follows; forecasting models cannot be used to detect anomalous patterns in time series. The investigation used case studies to disprove the hypothesis. Each case study used a forecasting model to measure the number of false, missed and correctly predicted alarms to determine if the hypothesis was disproved.The second area created a design for the extension. An initial design of the system was created. The design was implemented and evaluated to find improvements. The outcome was then used to create a general design.The results from the investigation disproved the hypothesis. The report also presents a general software design for an anomaly detection system. / Feldetektering är en nyckelkomponent för att minimera nedtid i mjukvarutjänster. Feldetektering hanteras vanligtvis av ett övervakningssystem. Detta projekt undersöker möjligheten att utöka ett befintligt övervakningssystem till att kunna skicka ut larm baserat på avvikande mönster i tidsserier.Projektet bröts upp i två områden. Det första området genomförde en undersökning om det är möjligt att skicka ut larm baserat på avvikande mönster i tidsserier. En hypotes bildades enligt följande; prognosmodeller kan inte användas för att upptäcka avvikande mönster i tidsserier. Undersökningen använde fallstudier till att motbevisa hypotesen. Varje fallstudie använde en prognosmodell för att mäta antalet falska, missade och korrekt förutsedda larm. Resultaten användes sedan för att avgöra om hypotesen var motbevisad.Det andra området innefattade skapadet av en mjukvarudesign för utökning av ett övervakningssystem. En initial mjukvarudesign av systemet skapades. Mjukvarudesignen implementerades sedan och utvärderades för att hitta förbättringar. Resultatet användes sedan för att skapa en generell design. Resultaten från undersökningen motbevisade hypotesen. Rapporten presenterar även en allmän mjukvarudesign för ettanomalitetsdetekteringssystem.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-254670 |
Date | January 2019 |
Creators | Walden, Love |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2019:425 |
Page generated in 0.0019 seconds