The work outlined in this thesis was sponsored, in part, by Anglo American and concerns the development of new technologies to achieve the concentration and separation of base metal values in chloride hydrometallurgical circuits. New processes for the production of zinc, cobalt and nickel aim to use solvent extraction to achieve the separation of metal values in highly concentrated acid chloride feeds containing iron and this thesis involves new extractants for potential use in these circuits. Anion exchange solvent extraction was chosen as the most practical approach and so a range of new reagents are described which remove zinc(II), cobalt(II) and iron(III) chlorometallates from acid chloride solutions via the reaction: nL(org) + nH+ + MClx n- [(LH)nMClx](org) Chapter 1 reviews the literature which concerns base metal chloride hydrometallurgy, presents a range of commercial processes and discusses the chemistry which underpins them. This chapter also outlines the new Anglo American circuits and the general approach to the design of base metal chlorometallate extractants. In Chapter 2, the analytical methods are discussed. These methods include the solvent extraction experiments that were used to define the behaviour of the new ligands and the techniques that were employed to examine the interactions between an extractant and a chlorometallate anion. Chapter 3 presents a series of five new amido-functionalised pyridine reagents that were designed to investigate the affect of hydrogen bond donor functionality on the extraction of zinc, cobalt and iron chlorometallates. The pyridine nitrogen atom is sterically hindered in the new reagents to suppress formation of inner-sphere complexes. Solvent extraction performance was found to vary considerably with hydrogen bond donor functionality and ligand structure. The ligand 2-(4,6-di-tertbutylpyridin- 2-yl)-N,N’-dihexylmalonamide (L2) was the strongest and most efficient extractant in this series and this was attributed to a ‘proton chelate’ six-membered ring interaction between the malonamide oxygens and the protonated pyridine nitrogen that resulted in a pre-organised array of N-H and C-H donors that could interact favourably with the chlorometallate anion. Chapter 4 explores a series of six new tertiary amine-based ligands which contain varying amido-functionality, e.g. 3-(di-2-ethylhexylamino)-N-hexylpropanamide (MAA). Zinc, cobalt and iron chlorometallate extraction studies show the amide and malonamide-functionalised ligands are notably stronger than the tertiary alkylamine control, tris-2-ethylhexylamine (TEHA). Platinum(IV) extraction is also discussed, showing that some of the new reagents are more efficient than the tren-based ligands previously described,{Bell Katherine, 2008 #93} which were the most efficient known. The enhanced extraction performance of the new ‘MAA-type’ ligands was again attributed to the formation of a ‘proton chelate’ six-membered ring forming [(LH)2MCl4] assemblies in the organic phase. Conditions have been identified which would allow separation of Fe(III), Co(II) and Zn(II) in circuits which use the ‘MAAtype’ reagents. Chapter 5 explores a series of three new malonamide reagents which contain varying alkyl-chain functionality, e.g. N,N’-dimethylhexylpentadecylmalonamide (M1), which are thought to extract chlorometallate anions via protonation of the carbonyl oxygens. Zinc, cobalt and iron chlorometallate extraction studies demonstrate that the malonamide ligands show high efficiency and selectivity for iron over zinc and cobalt. Performance as chlorometallate extractants was found to vary considerably with ligand structure and hydrogen bond donor functionality in all three ligand series, with a number of ligands showing potential for commercial application. Analysis of anion-host interactions suggests that chlorometallate binding in the organic phase probably proceeds via an array of both N-H and C-H weak hydrogen bonding interactions between the extractant and the outer-sphere of the metallate complex.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562774 |
Date | January 2009 |
Creators | Ellis, Ross Johannes |
Contributors | Tasker, Peter. : Yellowlees, Lesley |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/5938 |
Page generated in 0.0022 seconds