<p dir="ltr">Resilient engine operation hugely depends on proper functioning of the engine’s sensors, enabling efficient feedback control of the engine systems operation. When the sensors on the engine measure a physical quantity incorrectly, it leads the engine control system to determine that the sensor measuring the physical quantity has failed. This failure may be attributed to a sensor stick failure, bias failure, drift failure, or failure occurring due to physical wear and tear of the sensor. Failure of crucial engine sensors may have adverse effects on engine operation, and in most cases leading into a limp home mode or a torque limitation mode. This affects the engine performance and efficiency. The engine under study in this work is a medium duty marine engine with diesel fuel. Sensor failures in the middle of a marine operation can hugely impact its mission. Therefore, fault tolerant control systems are essential to counter these challenges occurring due to sensor failures. In this thesis, an advanced nonlinear fault detection and state estimation algorithm is developed and implemented on a GT-Power engine model, employing a sophisticated co-simulation approach. The focus is on a 6.7L Cummins diesel engine, for which a detailed nonlinear state space model is constructed. This model accurately replicates critical engine parameters, such as pressures, temperatures, and engine speed, by integrating various submodels. These sub-models estimate key parameters like cylinder inlet charge flow, valve flow, cylinder outlet temperature, turbocharger turbine flow, and charge air cooler flow. To assess the model’s accuracy and reliability, it is rigorously validated against a truth reference GT-Power engine model. The results demonstrate exceptional performance, with the nonlinear model exhibiting a minimal percentage performance error of less than 5% under steady-state conditions and less than 15% during transient conditions. The core of the Fault Detection and State Estimation (FDSE) modules consists of a bank of Extended Kalman Filters (EKF). These filters are meticulously designed to estimate vital engine states, generate residuals, and assess these residuals even in the presence of process and measurement noise. This approach enables the detection of sensor faults and facilitates controller reconfiguration, ensuring the engine’s robustness in the face of unexpected sensor failures. Crucially, the nonlinear physics-based model serves as the foundation for the state transition functions utilized in the design of the observer bank. Residuals generated by the EKFs are evaluated using both fixed and adaptive thresholding techniques masking the sensor faults at the time step at which it is detected, ensuring robust performance not only in steady-state conditions but also during varying transient load conditions. To comprehensively evaluate the system’s resilience in practical scenarios, multiple sensor stuck failures are introduced into the GT-Power model. A software-in-the-loop co-simulation strategy is meticulously established, employing both the GT-Power truth reference engine model and the nonlinear Fault Detection and State Estimation (FDSE) model within the Simulink environment. This unique co-simulation approach provides a platform to assess the FDSE performance and its effect on engine performance in simulated sensor fault scenarios. The FDSE module is able to detect sensor failures which deviate at least 5% from their actual values. The percentage estimation error is less than 10% under steady state conditions and less than 20% under transient load conditions. Ultimately, this process creates analytical redundancy, not only forming the basis of state estimation but also empowering the engine to maintain its performance in the presence of sensor faults.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24729426 |
Date | 05 December 2023 |
Creators | Shubham Ashok Konda (17551746) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/IMPROVING_THE_CONTROL_AND_SENSING_RESILIENCY_OF_A_DIESEL_ENGINE_USING_MODEL-BASED_METHODS/24729426 |
Page generated in 0.0022 seconds