Return to search

AA-CAES physical modelling: integration of a 1D TES code and plant performance analysis

The focus of this thesis work was the development of an approachto couple a previosly existing Thermal Energy Storage (TES) modelwritten in C++ with a Simulink/Simscape plant model to simulate anAdvanced Adiabatic Compressed Air Energy Storage (AA-CAES) plant.After the creation and validation of such tool, the complete modelwas used to run simulations, with the aim of assessing the AA-CAESplant's performance under multiple patterns of charge anddischarge.Most of the works found in the literature only provide values ofstorage efficiency obtained from analytical approaches, whilethose that use simulation tools provide average values ofefficiencies when the plant is performing a series of identicalcycles of charge and discharge. During this thesis project,instead, simulations were performed for consecutive irregularcycles determined as the plant response to the electric grid powerrequest. The average efficiency values obtained provide thereforea better representation of how the plant would perform in realapplications.The results show that, under the assumptions made, the AA-CAESplant's overall storage efficiency is influenced very weakly byalterations of the charge-discharge patterns, and that goodperformances can be expected not only for identical chargedischargeconsucutive cycles, but for any pattern that observesthe cavern pressure limits, as long as the thermal energy storageis sized wisely.In addition, a sensitivity analysis was performed in order toassess the influence of turbomachinery efficiency on overallstorage efficiency, for a specified plant layout. The results showthat the turbine efficiency is the most affecting parameter to theplant's performance, while the impact of the main compressors'sinefficiency is mitigated by the thermal recovery that takes placein the TES.The present work confirms that AA-CAES is a promising technologyand that storage efficiencies above 70% can be achieved even inrealistic production scenarios.Finally, future steps for more accurate simulations of plants'performances and more detailed energy production scenarios areproposed.MSc ET 18007Examinator: Joakim WidénÄmnesgranskare: Ane HåkanssonHandledare:

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-360448
Date January 2018
CreatorsSanto, Luca
PublisherUppsala universitet, Tillämpad kärnfysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMSc ET ; 18007

Page generated in 0.0027 seconds