This work consists in the development and design of an energy harvesting device to supply power to the new generation pacemakers, miniaturized leadless implants without battery placed directly in heart chambers. After analyzing different mechanical energy sources in the cardiac environment and associated energy harvesting mechanisms, a concept based on regular blood pressure variation stood out: an implant with a flexible packaging that transmits blood forces to an internal transducer. Advantages compared to traditional inertial scavengers are mainly: greater power density, adaptability to heartbeat frequency changes and miniaturization potential. Ultra-flexible 10-µm thin metal bellows have been designed, fabricated and tested. These prototypes acting as implant packaging that deforms under blood pressure actuation have validated the proposed harvesting concept. A new type of electrostatic transducer (3D multi-layer out-of-plane overlap structure with interdigitated combs) has been introduced and fully analyzed. Promising numerical results and associated fabrication processes are presented. Also, large stroke optimized piezoelectric spiral transducers including their complex electrodes patterns have been studied through a design analysis, numerical simulations, prototype fabrication and experimental testing. Apower density of 3 µJ/cm3/cycle has been experimentally achieved. With further addressed developments, the proposed device should provide enough energy to power autonomously and virtually perpetually the next generation of pacemakers.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00868838 |
Date | 09 July 2013 |
Creators | Deterre, Martin |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0024 seconds