Return to search

Improving Image Classification using Domain Adaptation for Autonomous Driving : A Master Thesis in Collaboration with Scania / Förbättring av Bildklassificering med hjälp av Domain Adaptation för Sjävkörande Fordon : Ett examensarbete i samarbete med Scania

Autonomous driving is a rapidly changing industry and has recently become a heavily focused research topic for vehicle producing companies and research organizations. These autonomous vehicles are typically equipped with sensors such as Light Detection and Radar (LiDAR) in order to perceive their surroundings. The problem of detecting and classifying surrounding objects from the sensor data can be solved using different types of algorithms. Recently, machine learning solutions have been investigated. One problem with the machine learning approach is that the models usually require a substantial amount of labeled data, and labeling LiDAR data is a time-consuming process. A promising solution to this problem is utilizing Domain Adaptation (DA) methods. The DA methods can use labeled camera data, which are easier to label, in conjunction with unlabeled LiDAR data to improve the performance of machine learning models on LiDAR data. This thesis investigates and compares different DA methods that can be used for classification of LiDAR data. In this thesis, two image classification datasets with data of humans and vehicles were created. One dataset contains camera images, and the other dataset contains LiDAR intensity images. The datasets were used to train and test three methods: (1) a baseline method, which simply uses labeled camera images to train a model. (2) Correlation Alignment (CORAL), a DA method that aligns the covariance of camera features towards LiDAR features. (3) Deep Adaptation Network (DAN), a DA method that includes a maximum mean discrepancy computation between camera and LiDAR features within the objective function of the model. These methods were then evaluated based on the resulting confusion matrices, accuracy, recall, precision and F1-score on LiDAR data. The results showed that DAN was the best out of the three methods, reaching an accuracy of 87% while the baseline and CORAL only measured at 65% and 73%, respectively. The strong performance of DAN showed that there is potential for using DA methods within the field of autonomous vehicles. / Industrin för självkörande fordon är snabbt förändlig och har under de senaste åren fått ett enormt fokus från biltillverkare och forskningsorganisationer. De självkörande fordonen är oftast utrustade med sensorer som Light Detection and Radar (LiDAR) för att hjälpa fordonen förstå omgivningen. Klassificering och identifiering av omgivande objekt är ett problem som kan lösas med hjälp av olika slags algoritmer. Nyligen har lösningar som utnyttjar maskininlärning undersökts. Ett problem med dessa lösningar är att modellerna oftast kräver en enorm mängd annoterad data, och att annotera LiDAR-data är en kostsam process. En lösning till detta problem är att utnyttja metoder inom Domain Adaptation (DA). DA metoder kan utnyttja både annoterad kameradata samt oannoterad LiDAR-data för att förbättra modellernas prestanda på LiDAR-data. Den här avhandlingen undersöker och jämför olika metoder inom DA som kan användas för att klassificera LiDAR-data. I det här arbetet skapades två dataset som består av data från människor och fordon. Det ena datasettet innehöll kamerabilder och det andra innehöll LiDAR-intensitetsbilder. Dessa dataset användes för att träna och testa tre olika metoder: (1) en baselinemetod, som endast använde annoterade kamerabilder för att träna en modell. (2) Correlation Alignment (CORAL), en metod inom DA som justerar kovariansen hos kamerafeatures mot kovariansen hos LiDAR-features. (3) Deep Adaptation Network (DAN), en metod inom DA som lägger till en uträkning av maximum mean discrepancy mellan kamerafeatures och LiDAR-features i modellens optimeringskriterie. Metoderna bedömdes sedan beroende på deras förvirringsmatriser, träffsäkerhet, precision, täckning och F1-träffsäkerhet på LiDAR-data. Resultaten avslöjade att DAN presterade bäst av de tre metoderna och uppnåde 87% träffsäkerhet medan baselinemetoden och CORAL bara uppnådde 65% respektive 73%. DANs imponerande prestation visade att det finns potential för att använda metoder inom DA för självkörande fordon.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-325782
Date January 2023
CreatorsWestlund, Mikael
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:81

Page generated in 0.0026 seconds