Return to search

Analyse mathématique de modèles d'intrusion marine dans les aquifères côtiers / Analysis of mathematical models describing salwater in coastal aquifers

Le thème de cette thèse est l'analyse mathématique de modèles décrivant l'intrusion saline dans les aquifères côtiers. On a choisi d'adopter la simplicité de l'approche avec interface nette : il n'y a pas de transfert de masse entre l'eau douce et l'eau salée (resp. entre la zone saturée et la zone sèche). On compense la difficulté mathématique liée à l'analyse des interfaces libres par un processus de moyennisation verticale nous permettant de réduire le problème initialement 3D à un système d'edps définies sur un domaine, Ω, 2D. Un second modèle est obtenu en combinant l'approche 'interface nette' à celle avec interface diffuse ; cette approche est déduite de la théorie introduite par Allen-Cahn, utilisant des fonctions de phase pour décrire les phénomènes de transition entre les milieux d'eau douce et d'eau salée (respectivement les milieux saturé et insaturé). Le problème d'origine 3D est alors réduit à un système fortement couplé d'edps quasi-linéaires de type parabolique dans le cas des aquifères libres décrivant l'évolution des profondeurs des 2 surfaces libres et de type elliptique-parabolique dans le cas des aquifères confinés, les inconnues étant alors la profondeur de l'interface eau salée par rapport à eau douce et la charge hydraulique de l'eau douce. Dans la première partie de la thèse, des résultats d'existence globale en temps sont démontrés montrant que l'approche couplée interface nette-interface diffuse est plus pertinente puisqu'elle permet d'établir un principe du maximum plus physique (plus précisèment une hiérarchie entre les 2 surfaces libres). En revanche, dans le cas de l'aquifère confiné, nous montrons que les deux approches conduisent à des résultats similaires. Dans la seconde partie de la thèse, nous prouvons l'unicité de la solution dans le cas non dégénéré, la preuve reposant sur un résultat de régularité du gradient de la solution dans l'espace Lr (ΩT), r > 2, (ΩT = (0,T) x Ω). Puis nous nous intéressons à un problème d'identification des conductivités hydrauliques dans le cas instationnaire. Ce problème est formulé par un problème d'optimisation dont la fonction coût mesure l'écart quadratique entre les charges hydrauliques expérimentales et celles données par le modèle. / The theme of this thesis is the analysis of mathematical models describing saltwater intrusion in coastal aquifers. The simplicity of sharp interface approach is chosen : there is no mass transfer between fresh water and salt water (respectively between the saturated zone and the area dry). We compensate the mathematical difficulty of the analysis of free interfaces by a vertical averaging process allowing us to reduce the 3D problem to system of pde's defined on a 2D domain Ω. A second model is obtained by combining the approach of 'sharp interface' in that with 'diffuse interface' ; this approach is derived from the theory introduced by Allen-Cahn, using phase functions to describe the phenomena of transition between fresh water and salt water (respectively the saturated and unsaturated areas). The 3D problem is then reduced to a strongly coupled system of quasi-linear parabolic equations in the unconfined case describing the evolution of the DEPTHS of two free surfaces and elliptical-parabolic equations in the case of confined aquifer, the unknowns being the depth of salt water/fresh water interface and the fresh water hydraulic head. In the first part of the thesis, the results of global in time existence are demonstrated showing that the sharp-diffuse interface approach is more relevant since it allows to establish a mor physical maximum principle (more precisely a hierarchy between the two free surfaces). In contrast, in the case of confined aquifer, we show that both approach leads to similar results. In the second part of the thesis, we prove the uniqueness of the solution in the non-degenerate case. The proof is based on a regularity result of the gradient of the solution in the space Lr (ΩT), r > 2, (ΩT = (0,T) x Ω). Then we are interest in a problem of identification of hydraulic conductivities in the unsteady case. This problem is formulated by an optimization problem whose cost function measures the squared difference between experimental hydraulic heads and those given by the model.

Identiferoai:union.ndltd.org:theses.fr/2015DUNK0378
Date20 October 2015
CreatorsLi, Ji
ContributorsLittoral, Rosier, Carole
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds