Return to search

A Limit Theorem in Cryptography.

Cryptography is the study of encryptying and decrypting messages and deciphering encrypted messages when the code is unknown. We consider Λπ(Δx, Δy) which is a count of how many ways a permutation satisfies a certain property. According to Hawkes and O'Connor, the distribution of Λπ(Δx, Δy) tends to a Poisson distribution with parameter ½ as m → ∞ for all Δx,Δy ∈ (Z/qZ)m - 0. We give a proof of this theorem using the Stein-Chen method: As qm approaches infinity, the distribution of Λπ(Δx, Δy) is approximately Poisson with parameter ½. Error bounds for this approximation are provided.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-2199
Date16 August 2005
CreatorsLynch, Kevin
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0019 seconds