Cryptography is the study of encryptying and decrypting messages and deciphering encrypted messages when the code is unknown. We consider Λπ(Δx, Δy) which is a count of how many ways a permutation satisfies a certain property. According to Hawkes and O'Connor, the distribution of Λπ(Δx, Δy) tends to a Poisson distribution with parameter ½ as m → ∞ for all Δx,Δy ∈ (Z/qZ)m - 0. We give a proof of this theorem using the Stein-Chen method: As qm approaches infinity, the distribution of Λπ(Δx, Δy) is approximately Poisson with parameter ½. Error bounds for this approximation are provided.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-2199 |
Date | 16 August 2005 |
Creators | Lynch, Kevin |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0019 seconds