[pt] A construção de redes complexas é de grande importância para o estudo de modelos de agentes e sistemas dinâmicos, a exemplo dos modelos de opinião, de epidemias, sistemas de osciladores ou mapas acoplados, etc., que usam grafos como substrato das interações entre os elementos do sistema. Essas dinâmicas dependem fortemente das características topológicas da rede de interações, portanto, é fundamental construir redes com propriedades estruturais bem definidas. Uma das propriedades de grande importância
é o grau médio, primeiro momento da distribuição de graus. Nos casos em que a distribuição de graus decai como uma lei de potência, o seu expoente é outra grandeza relevante, relacionada à possibilidade de ter vértices muito conectados. Além disso, procura-se evitar as correlações. Dentro deste quadro, estudamos os efeitos que certas características da distribuição de graus têm nas propriedades da rede, construída mediante o modelo de configuração. Para cada valor do expoente da lei de potência, fixamos os
graus mínimo, máximo, e médio, comparando o efeito destes parâmetros nas redes resultantes, através do coeficiente de agrupamento e da correlação de graus entre sítios vizinhos. / [en] The construction of complex networks is of great importance for the study of agent-based models and dynamical systems, such as opinion models, epidemics, oscillator systems or coupled maps, etc., that use graphs as a substrate to represent the interaction paths. The dynamics can strongly depend
on the topological characteristics of the interaction network, therefore, it is essential to build networks with well-defined structural properties. One of the properties of great importance is the average degree, the first moment of degree distribution. In cases where the degree distribution decays like a power law, its exponent is another relevant quantity, related to the possibility of hubs. Within this framework, we study the effects that certain characteristics of the degree distribution have on the properties of the network,
built using the configuration model. For each value of the power-law exponent, we fix the minimum, maximum, and average degrees, comparing the effect of these parameters on the resulting networks, through the clustering coefficient and the degree-degree correlation between neighboring sites.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:57097 |
Date | 18 January 2022 |
Creators | JUDSON DE OLIVEIRA MOURA |
Contributors | CELIA BEATRIZ ANTENEODO DE PORTO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | English |
Type | TEXTO |
Page generated in 0.0077 seconds