• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] EFFECTS OF CONTACT NETWORK RANDOMNESS ON MULTIPLE OPINION DYNAMICS / [pt] EFEITOS DA ALEATORIEDADE DA REDE DE CONTATOS EM DINÂMICAS DE MÚLTIPLAS ESCOLHAS

VIVIAN DE ARAUJO DORNELAS NUNES 07 July 2017 (has links)
[pt] Muitas vezes enfrentamos o desafio de escolher entre diferentes opções com atratividade semelhante como, por exemplo, na escolha de um candidato parlamentar, na escolha de um filme ou ao comprar um produto no supermercado. A fim de estudar a distribuição das preferências em tais situações, podemos considerar dinâmicas de opinião (com diversas opções possíveis, contemplando também os casos em que há indecisão) em redes. Neste trabalho, utilizamos duas dinâmicas distintas: uma envolvendo o contágio direto de cada sítio para a sua vizinhança (regra A) e a outra onde a opinião de cada sítio é definida pela maioria relativa local (regra B). A topologia da rede de contatos pode ter um efeito importante sobre a distribuição final de opiniões. Utilizamos as redes de Watts-Strogatz e, em particular, estamos interessados em investigar a contribuição da aleatoriedade p da rede no resultado final das dinâmicas. Dependendo das propriedades estruturais da rede e das condições iniciais, podemos ter diferentes resultados finais: equipartição de preferências, consenso e situações onde a indecisão é relevante. O papel da aleatoriedade da rede é não trivial: para um número pequeno de opiniões, as regras A e B (esta última com atualização síncrona) apresentam um valor ótimo de p, onde o predomínio da opinião vencedora é máximo. Já para a regra da pluralidade com atualização assíncrona, o aumento do número de atalhos pode até mesmo promover situações de consenso. Além disso, as duas dinâmicas (e seus diferentes modos de atualização) coincidem para baixa desordem da rede, mas diferem para graus de desordem maiores. Observaremos também que a quantidade de iniciadores diminui a fração da opinião vencedora para todas as dinâmicas e atenua o máximo local que aparece na região de mundo pequeno. / [en] People often face the challenge of choosing amongst different options with similar attractiveness, such as when choosing a parliamentary candidate, a movie or buying a product in the supermarket. In order to study the distribution of preferences in such situations, we can consider opinion dynamics (where different options are available as well as the undecided state) in network. In this work, we use two different opinion dynamics: one involving the direct contagion from each site to its neighborhood (rule A) and another where the opinion of each site is defined by the local relative majority (rule B). The contact network topology can have a important effect in the final distribution of opinions. We use the Watts-Strogatz network and, in particular, we are interested in investigating the contribution of the network randomness p in the output of the dynamics. Depending on the structural properties of the network and the initial conditions, the final distribution can be: equipartition of preferences, consensus and situations where indecision is relevant. The role of network randomness is nontrivial: for a small number of opinions, the rules A and B (the latter with synchronous update) present an optimum value of p, where the predominance of a winning opinion is maximal. Moreover, for the plurality rule with asynchronous update, the increase of the number of shortcuts can even promote consensus situations. Furthermore, both dynamics coincide for small disorder of the network, but differ for larger disorder. Also we observe that the number of initiators decreases the value of the winning fraction in all types of dynamics and attenuates the local maximum that appears in the small-world region.
2

[pt] DINÂMICAS DE OPINIÃO EM REDES COMPLEXAS / [en] OPINION DYNAMICS IN COMPLEX NETWORKS

MARLON FERREIRA RAMOS 17 May 2016 (has links)
[pt] Esta tese aborda diversos problemas que podem ser tratados mediante modelos de dinâmica de opiniões, segundo os quais os indivíduos, conectados de acordo com redes complexas, interagem mediante regras que moldam as preferências e o posicionamento desses indivíduos com relação a uma determinada questão. A metodologia utilizada para investigar os padrões emergentes dessas interações consiste na utilização de diversas técnicas da física estatística. A tese está organizada em torno de quatro problemas distintos, com uma questão particular a ser respondida em cada caso, buscando sempre a validação empírica dos resultados teóricos e computacionais. No primeiro trabalho, é respondida a seguinte questão básica sobre propriedades da rede que podem ter impacto sobre os processos de propagação: quais são os valores típicos das distâncias, coeficiente de aglomeração e outras grandezas estruturais da rede, quando considerado o ensemble de redes aleatórias com uma assortatividade fixa? No segundo trabalho, investigamos os padrões que surgem na avaliação de filmes, considerando como fonte o IMDb (Internet Movie Database). Encontramos que a distribuição de votos apresenta um comportamento livre de escala com um expoente muito próximo de 3/2. Curiosamente, esse padrão é robusto, independente de atributos dos filmes como nota média, idade ou gênero. A análise empírica aponta para um mecanismo de propagação de adoções simples, que gera uma dinâmica de avalanches de campo médio. No terceiro trabalho, abordamos o problema de múltiplas escolhas por meio de um modelo que inclui a possibilidade de indecisão e onde as escolhas dos indivíduos evoluem segundo uma regra de pluralidade. Mostramos que essa dinâmica em redes com a propriedade de mundo pequeno produz diferentes estados estacionários realísticos, que dependem do número de alternativas e da distribuição de graus: consenso, distribuição de adoções larga similar à reais e situações onde a indecisão predomina, quando o número de alternativas é suficientemente grande. Por último, investigamos o surgimento de posições extremas na sociedade, mediante pesquisas em uma ampla gama de questões. O aumento de atitudes extremas tem como precursor uma relação não linear entre a fração de extremistas e a de moderados. Propomos um modelo, com regras de ativação baseadas na teimosia dos indivíduos, que permite interpretar o início da não linearidade em termos de uma transição abrupta do tipo percolação de inicialização onde acontecem cascatas de extremismo. Como conclusão geral, destacamos que esta tese ilustra como os modelos de opinião, aliados às enormes bases de dados, fornecem resultados com poder de interpretação e predição dos padrões empíricos. / [en] This thesis addresses several problems that can be treated through models of opinion dynamics, according to which individuals, connected according to complex networks, interact through rules that shape their preferences and opinions in relation to a particular issue. The methodology used to investigate the patterns that emerge from those interactions relies on the use of various techniques of statistical physics. The thesis is organized around four distinct problems, with a particular question to be answered in each case, always looking for empirical validation of the theoretical and computational results. In the first work, it is answered the following basic question about network properties that can have impact on the spreading processes: what are the typical values of the distances, clustering coefficient and other structural quantities, when considering the ensemble of random networks with fix assortativity? In the second study, we investigated the patterns that emerge in the ratings of films, considering as source IMDb (Internet Movie Database). We found that the distribution of votes has a scale-free behavior with a exponent close to 3/2. Interestingly, this pattern is robust, independently of movie attributes such as average note, age or gender. The empirical analysis points to a simple mechanism of adoption propagation, that generates mean-field avalanches. In the third study, we discuss the problem of multiple choices by means of a model which includes the possibility of indecision and where the choices of individuals evolve according to a plurality rule. We show that this dynamics on top of networks with the small-world property produces different stationary states that depend on the number of alternatives and on the degree distribution: consensus, wide adoption distributions similar to actual ones and situations where indecision prevails when the number of alternatives is large enough. Finally, we investigate the appearance of extreme positions in society, through the polls on a wide variety of questions. The increase of extreme opinions has as precursor a non-linear relationship between the fraction of extremists and that of moderates. We propose a model with activation rules, based on the stubbornness of the individuals, which enables interpreting the beginning of the non-linearity in terms of an abrupt transition of the class of bootstrap percolation, where activation cascades occur. As a general conclusion, we emphasize that this thesis illustrates how opinion models, combined with huge databases, provide results with power of interpretation and prediction of empirical patterns.
3

[en] DATA ENRICHMENT BASED ON SIMILARITY GRAPH STATISTICS TO IMPROVE PERFORMANCE IN CLASSIFICATION SUPERVISED ML MODELS / [pt] ENRIQUECIMENTO DE DADOS COM BASE EM ESTATÍSTICAS DE GRAFO DE SIMILARIDADE PARA MELHORAR O DESEMPENHO EM MODELOS DE ML SUPERVISIONADOS DE CLASSIFICAÇÃO

NEY BARCHILON 19 September 2024 (has links)
[pt] A otimização do desempenho dos modelos de aprendizado de máquina supervisionados representa um desafio constante, especialmente em contextos com conjuntos de dados de alta dimensionalidade ou com numerosos atributos correlacionados. Neste estudo, é proposto um método para o enriquecimento de conjuntos de dados tabulares, fundamentado na utilização de estatísticas provenientes de um grafo construído a partir da similaridade entre as instâncias presentes neste conjunto de dados, buscando capturar correlações estruturais entre esses dados. As instâncias assumem o papel de vértices no grafo, enquanto as conexões entre elas refletem sua similaridade. O conjunto de características originais (FO) é enriquecido com as estatísticas extraídas do grafo (FG) na busca pela melhora do poder preditivo dos modelos de aprendizado de máquina. O método foi avaliado em dez conjuntos de dados públicos de distintas áreas de conhecimento, em dois cenários distintos, sobre sete modelos de aprendizado de máquina, comparando a predição sobre o conjunto de dados inicial (FO) com o conjunto de dados enriquecido com as estatísticas extraídas do seu grafo (FO+FG). Os resultados revelaram melhorias significativas na métrica de acurácia, com um aprimoramento médio de aproximadamente 4,9 por cento. Além de sua flexibilidade para integração com outras técnicas de enriquecimento existentes, o método se apresenta como uma alternativa eficaz, sobretudo em situações em que os conjuntos de dados originais carecem das características necessárias para as abordagens tradicionais de enriquecimento com a utilização de grafo. / [en] The optimization of supervised machine learning models performancerepresents a constant challenge, especially in contexts with high-dimensionaldatasets or numerous correlated attributes. In this study, we propose a methodfor enriching tabular datasets, based on the use of statistics derived from agraph constructed from the similarity between instances in the dataset, aimingto capture structural correlations among the data. Instances take on the role ofvertices in the graph, while connections between them reflect their similarity.The original feature set (FO) is enriched with statistics extracted from thegraph (FG) to enhance the predictive power of machine learning models. Themethod was evaluated on ten public datasets from different domains, in twodistinct scenarios, across seven machine learning models, comparing predictionon the initial dataset (FO) with the dataset enriched with statistics extractedfrom its graph (FO+FG). The results revealed significant improvements inaccuracy metrics, with an average enhancement of approximately 4.9 percent. Inaddition to its flexibility for integration with existing enrichment techniques,the method presents itself as a effective alternative, particularly in situationswhere original datasets lack the necessary characteristics for traditional graph-based enrichment approaches.
4

[pt] CONTROLANDO O GRAU MÉDIO NA CONSTRUÇÃO DE REDES COMPLEXAS / [en] CONTROLLING THE AVERAGE DEGREE IN BUILDING COMPLEX NETWORKS

JUDSON DE OLIVEIRA MOURA 18 January 2022 (has links)
[pt] A construção de redes complexas é de grande importância para o estudo de modelos de agentes e sistemas dinâmicos, a exemplo dos modelos de opinião, de epidemias, sistemas de osciladores ou mapas acoplados, etc., que usam grafos como substrato das interações entre os elementos do sistema. Essas dinâmicas dependem fortemente das características topológicas da rede de interações, portanto, é fundamental construir redes com propriedades estruturais bem definidas. Uma das propriedades de grande importância é o grau médio, primeiro momento da distribuição de graus. Nos casos em que a distribuição de graus decai como uma lei de potência, o seu expoente é outra grandeza relevante, relacionada à possibilidade de ter vértices muito conectados. Além disso, procura-se evitar as correlações. Dentro deste quadro, estudamos os efeitos que certas características da distribuição de graus têm nas propriedades da rede, construída mediante o modelo de configuração. Para cada valor do expoente da lei de potência, fixamos os graus mínimo, máximo, e médio, comparando o efeito destes parâmetros nas redes resultantes, através do coeficiente de agrupamento e da correlação de graus entre sítios vizinhos. / [en] The construction of complex networks is of great importance for the study of agent-based models and dynamical systems, such as opinion models, epidemics, oscillator systems or coupled maps, etc., that use graphs as a substrate to represent the interaction paths. The dynamics can strongly depend on the topological characteristics of the interaction network, therefore, it is essential to build networks with well-defined structural properties. One of the properties of great importance is the average degree, the first moment of degree distribution. In cases where the degree distribution decays like a power law, its exponent is another relevant quantity, related to the possibility of hubs. Within this framework, we study the effects that certain characteristics of the degree distribution have on the properties of the network, built using the configuration model. For each value of the power-law exponent, we fix the minimum, maximum, and average degrees, comparing the effect of these parameters on the resulting networks, through the clustering coefficient and the degree-degree correlation between neighboring sites.

Page generated in 0.0501 seconds