[pt] Para simular, prever e controlar os sistemas de energia elétrica, engenheiros precisam de ferramentas computacionais para modelar os componentes dessa rede interconectada altamente complexa. Muitos esforços ao longo do século passado foram dedicados a desenvolver modelos matemáticos para geradores, linhas de transmissão, compensadores de potência reativa, transformadores e assim por diante. Os principais componentes dos sistemas de potência são representados precisamente através de modelos matemáticos, mas as cargas ainda são uma fonte de incerteza nas simulações, devido à sua característica de aleatoriedade. Modelos de carga conservadores superestimam a resposta de potência a desvios de tensão, enquanto modelos de carga excessivamente otimistas podem subestimar as margens de estabilidade, deixando o sistema muito próximo do seu limite operacional. É preciso estabelecer representações de cargas tão próximas da realidade quanto possível, a fim de explorar os recursos de rede de modo mais eficiente. Este trabalho fornece uma metodologia para modelagem de carga, investigando e resumindo as etapas do processo, que podem ser implementadas de diversas maneiras. O tratamento de dados, a escolha de uma representação matemática do modelo de carga e sua estimação de parâmetros são apresentados através de estudos de caso reais, tanto para uma aplicação focada na dinâmica do
sistema elétrica, quanto para uma aplicação em regime permanente. Discute-se como otimização e conceitos de inferência estatística podem ser ferramentas efetivas para alcançar melhores aproximações sobre como a carga responderá a perturbações causadas por variações de tensão, sejam estas variações espontâneas, ou devido a ações de controle, ou causadas por curtos-circuitos. / [en] To simulate, predict and control Electric Power Systems (EPS), engineers need tools to model the components of this highly complex interconnected network. Many efforts over the past century were dedicated to develop mathematical models for generators, transmission lines, reactive power compensators, transformers and so on. The main components of the power systems are precisely represented by mathematical models, but the loads are still a source of uncertainty in the simulations, due to their random characteristics. It is well known that conservative load models super estimate power response to voltage deviations, and, on the other hand, over-optimistic load models may underestimate stability margins, leading a system to operate too close to its limit. It is necessary to stablish load representations as close to reality as possible, in order to fully exploit grid resources. This work provides a methodology for load modeling, investigating and summarizing the steps of the process, whose can be
implemented in a wide variety of ways. Data treatment, the choice of a load model representation and their parameters estimation are presented through real case studies, both for dynamic simulation and a steady state application. It is discussed how optimization and statistical inference concepts can be effective tools to reach better approximations on how load will respond to disturbances caused by voltage variations, whether these were spontaneous, due to control actions, or caused by short-circuits.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:48217 |
Date | 21 May 2020 |
Creators | IGOR FERREIRA VISCONTI |
Contributors | DELBERIS ARAUJO LIMA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0026 seconds