Return to search

[pt] APLICAÇÃO DE TÉCNICAS DE APRENDIZADO DE MÁQUINA PARA A PREDIÇÃO DE INTERNAÇÕES DE ALTO CUSTO / [en] MACHINE LEARNING TO PREDICT HIGH-COST HOSPITALIZATIONS

[pt] Empresas do ramo da Saúde vêm evoluindo seus modelos de gestão, desenvolvendo programas proativos para melhorar a qualidade e a eficiência dos seus serviços considerando informações históricas. Estratégias proativas buscam prevenir e detectar doenças precocemente e também melhorar os resultados das internações. Nesse sentido, uma tarefa desafiadora é identificar quais pacientes devem ser incluídos em programas proativos de saúde. Para isso, a previsão e a modelagem de variáveis relacionadas aos custos estão entre as abordagens mais amplamente utilizadas, uma vez que essas variáveis sào potenciais indicadores do risco, da gravidade e do consumo de recursos médicos de uma internação. A maioria das pesquisas nesta área têm como foco modelar variáveis de custo em uma perspectiva geral e prever variações de custos para períodos específicos. Por outro lado, este trabalho se concentra na previsão dos custos de um evento específico. Em particular, esta dissertação prescreve uma solução para a predição de internações de alto custo, visando dar apoio a gestores de serviços em saúde em suas ações proativas. Para esse fim, foi seguida a metodologia de pesquisa Design Science Research (DSR), aliada ao ciclo de vida de projeto de Ciência de Dados, sobre um cenário real de uma empresa de consultoria em saúde. Os dados fornecidos descrevem internações de pacientes através de suas características demográficas e do histórico de consumo de recursos médicos. Diferentes técnicas estatísticas e de Aprendizado de Máquina foram aplicadas, como Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Classification and Regression Trees (CART), Random Forest (RF) e Extreme Gradient Boosting (XGB). Os resultados experimentais evidenciaram que as técnicas RF e XGB apresentaram o melhor desempenho, atingindo AUCPR de 0,732 e 0,644, respectivamente. O modelo de predição da técnica RF foi capaz de detectar até 72 porcento, em média, das internações de alto custo com 33 porcento de precisão, o que representa 78,7 porcento do custo total gerado por tais internações. Além disso, os resultados monstraram que o uso de custo prévio e variáveis agregadas de consumo de recursos aumentaram a capacidade de predição do modelo / [en] Healthcare providers are evolving their management models, developing proactive programs to improve the quality and efficiency of their health services, considering the available historical information. Proactive strategies seek not only to prevent and detect diseases but also to enhance hospitalization outcomes. In this sense, one of the most challenging tasks is to identify which patients should be included in proactive health programs. To this end, forecasting and modeling cost-related variables are among the most widely used approaches for identifying such patients, since these variables are potential indicators of the patients hospitalization risk, their severity, and their medical resources consumption. Most of the existing research works in this area aim to model cost variables from an overall perspective and predict cost variations for specific periods. In contrast, this work focuses on predicting the costs of a particular event. Specifically, this thesis prescribes a solution for identifying high-cost hospitalizations, to support health service managers in their proactive actions. To this end, the Design Science Research (DSR) methodology was combined with the Data Science life cycle in a real scenario of a health consulting company. The data provided describes patients hospitalizations through their demographic characteristics and their medical resource consumption. Different statistical and Machine Learning techniques were used to predict high-cost hospitalizations, such as Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Classification and Regression Trees (CART), Random Forest (RF), and Extreme Gradient Boosting (XGB). The experimental results showed that RF and XGB presented the best performance, reaching an Area Under the Curve Precision-Recall (AUCPR) of 0.732 and 0.644, respectively. In the case of RF, the model was able to detect, on average, 72 percent of the high-cost hospitalizations with a 33 percent of Precision, which represents 78.7 percent of the total cost generated by the high-cost hospitalizations. Moreover, the obtained results showed that the use of prior cost and aggregated variables of resource consumption increased the model s ability to predict high-cost hospitalizations.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:49137
Date25 August 2020
CreatorsADRIAN MANRESA PEREZ
ContributorsFERNANDA ARAUJO BAIAO AMORIM, FERNANDA ARAUJO BAIAO AMORIM
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.0018 seconds