[pt] O objetivo deste trabalho foi desenvolver métodos eficientes e reprodutíveis de crescimento de monocamadas de WS2, MoS2 e outras heteroestruturas verticais por deposição química em fase de vapor à pressão atmosférica (APCVD). A monocamada separada destes materiais tem grande importância
na fabricação de novos dispositivos óticos e Nano eletrônicos. Dispositivos finos e de baixo custo necessitam temperaturas em torno de 800 graus celsius, o que é um problema para aplicações mencionadas acima. Nesta tese, nós propusemos uma nova rota usando APCVD para crescer monocamadas de MoS2 a 550 graus celsius, usando sódio como catalisador. Nós produzimos monocristais e poli cristais
controlando a razão de precursores NaNO3/MoO3 e tempo de crescimento. Usando cálculos de primeiros princípios, mostramos que o sódio atua como centro de nucleação para o processo de síntese. A razão de precursores é crucial para diminuir a energia de formação e a temperatura de síntese. Cálculos
de primeiros princípios e experimentos concordam que uma razão ideal é em torno de 0.3, proporcionando uma queda de 250 graus celsius na temperatura de crescimento. Nós investigamos as amostras crescidas por APCVD usando espectroscopia de fotoelétrons induzidos por raios-X, microscopia de força atômica,
espectroscopia Raman, fotoluminescência e mediadas de transporte. Dicalcogenetos de metais de transição (TMD) dispostos em poucas camadas permitem-nos criar materiais e estudar novos fenômenos físicos.
A sequência de empilhamento dos TMDs pode modificar suas propriedades opticas e elétricas. Também sintetizamos poucas camadas de MoS2 e WS2 usando APCVD. Duas e três camadas de WS2, MoS2 e suas heteroestruturas verticais foram caracterizadas através de geração de segundo harmônico (SHG).
SHG mostra que as bicamadas crescidas com ângulos de rotação relativos de 0 grau e 60 graus possuem diferentes fases de empilhamento. O SHG do empilhamento bicamada com ângulo relativo de 0 graus aumentos, enquanto para amostras com empilhamento de 60 graus foi zerado. Este comportamento do SHG sugere que duas camadas de MoS2 ou WS2, quando empilhados a 0 graus não possuem simetria de
inversão para 3R(AB) entre as camadas inferiores e superiores, enquanto as camadas de 60 graus possuem simetria de inversão (centrossimétricas) e possuem empilhamento na forma 2H(AA). Finalmente, dispositivos foram fabricados em amostras de boa qualidade para a investigação de sua performance elétrica. Os dispositivos mostram comportamento típico tipo-n e sua mobilidade foi estimada a partir das curvas de transporte. A dependência dos modos Raman das nossas amostras de heteroestruturas também foi estudada. Aplicando uma tensão nos dispositivos, o modo A1 mostrou um desvio para o azul e um novo modo surge em 410 cm-1, atribuídos defeitos (D) no cristal. / [en] The aim of this work was to develop reliable and repeatable methods for growing high-quality monolayer MoS2, WS2, and their vertical heterostructure by atmospheric pressure chemical vapor deposition (APCVD) technique. The monolayer of these materials have vital importance in the fabrication of new optical and nanoelectronic devices. Thin and low-cost devices have increased the demand for new synthesis processes. Usually, the synthesis requires temperatures around 800 Celsius degrees, which is an issue for applications mentioned above. In this thesis, we propose a new route using the APCVD technique to grow monolayers
of MoS2 at 550 Celsius degrees mediated by sodium as a catalyst. We have produced single crystals and polycrystals by controlling the NaNO3/MoO3 precursor s ratio and growth time. Using first-principles calculations, we find out that sodium is the nucleation site of the growth process. The precursor s ratio is
crucial to decrease the energy formation and the synthesis temperature. Firstprinciples calculations and experiments agree with the ideal precursor s rate of 0.3 and with the decrease of the synthesis temperature of 250 Celsius degrees. We investigated the CVD grown sample with X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, photoluminescence spectroscopy, and
transport experiments. Few layers of TMDs allow us to create new materials and find new physical
phenomena. The stacking sequence in few-layer TMDs can significantly impact on their electrical and optical properties.We also synthesized few layers of MoS2 and WS2 via APCVD. Two and three layers of MoS2, WS2, and their vertical heterostructures were characterized by second harmonic generation
(SHG). The SHG shows that the layers in bilayers grow with 0 degrees or 60 degrees has different phase stacking. The SHG from 0 degrees stacked bilayer has increased when compared to monolayer, while the generated signal from bilayer with 60 degrees stacking is zero. This behavior of SHG suggests that the two layers of MoS2 or WS2 when stacked at 0 degrees have no inversion symmetry to 3R(AB) phase stacking
between the top layer and the bottom layer. While when stacked with 60 degrees has inversion symmetry (Centrosymmetric) and have 2H(AA0) phase stacking. Finally, the devices were fabricated on good quality samples to investigate their electrical performance. The fabricated devices show typical n-type behavior and mobility was estimated by measuring transport curves. The dependence of Raman modes of our heterostructure device with electron doping was also studied. By applying a voltage across our device the A1 mode shows blueshift and a new mode emerges at ~ 410 cm-1, which is attributed to the defects (D) in the crystal.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:51048 |
Date | 29 December 2020 |
Creators | SYED HAMZA SAFEER GARDEZI |
Contributors | VICTOR CAROZO GOIS DE OLIVEIRA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | English |
Type | TEXTO |
Page generated in 0.0027 seconds