Return to search

[en] USE OF ARTIFICIAL NEURAL NETWORKS IN THE RECOGNITION OF BI-DIMENSION IMAGES / [pt] REDES NEURAIS APLICADAS AO RECONHECIMENTO DE IMAGENS BI-DIMENSIONAIS

[pt] Esta dissertação investiga a aplicação de Redes Neurais
Artificiais no reconhecimento de imagens bi-dimensionais. O
trabalho de tese foi dividido em quatro partes principais:
um estudo sobre a importância da Visão Computacional e
sobre os benefícios da aplicação das técnicas da
Inteligência Computacional na área; um estudo da estrutura
dos sistemas de reconhecimento de imagens encontrados na
literatura; o desenvolvimento de dois sistemas de
reconhecimento de imagens baseados em redes neurais; e o
estudo de caso e a análise de desempenho dos sistemas
desenvolvidos. A Visão Computacional tem se beneficiado das
principais técnicas de Inteligência Computacional (redes
neurais, algoritmos genéticos e lógica nebulosa) na
implementação de sistemas de reconhecimento de imagens.
Neste trabalho estudou-se a aplicação de diversos tipos de
redes neurais na classificação de imagens Back-Propagation,
Competitivas, RBF e Hierárquicas. Além disso, foi realizado
um estudo das áreas de aplicação da Visão Computacional. A
estrutura básica utilizada por diversos sistemas de Visão
Computacional encontrada na literatura foi analisada. Esta
estrutura é tipicamente composta por três módulos
principais: um pré-processador, um extrator de
características e um classificador. Dois sistemas de
reconhecimento de imagens, denominados de XVision e
SimpleNet, foram desenvolvidos neste trabalho. O sistema
XVision segue a estrutura descrita acima, enquanto que o
sistema SimpleNet utiliza a informação da imagem bruta para
realizar a classificação. O módulo de pré-processamento do
sistema XVision executa uma série de transformações na
imagem, extraindo suas características intrínsecas para que
seja obtida uma representação da imagem invariante a
aspectos como rotação, translação e escalonamento. Este Pré-
Processador é baseado em um trabalho previamente realizado
no campo de Processamento de Sinais. A etapa de extração de
características visa detectar as informações mais
relevantes contidas na representação da imagem intrínseca
obtida na etapa anterior. Foram investigados extratores
baseados em técnicas estatísticas (utilizando o
discriminante de Fisher) e em técnicas inteligentes
(utilizando algoritmos genéticos). Para o módulo de
classificação das imagens foram utilizados diversos tipos
de redes neurais artificiais: Back-Propagation,
Competitivas, RBFs e Hierárquicas. No sistema SimpleNet, o
pré-processamento limita-se à redução das dimensões da
imagem a ser classificada. Como os próprios pixels da
imagem são utilizados para a classificação, não foi
implementado um módulo de extração de características. Na
etapa de classificação foram empregadas redes neurais Back-
Propagation e Competitivas. O sistema XVision apresentou
resultados promissores para dois conjuntos distintos de
objetos bi-dimensionais: o primeiro composto por peças
mecânicas e o segundo por objetos triviais. As amostras
utilizadas nos testes apresentavam características
diferentes daquelas com as quais as redes neurais foram
treinadas - não apenas com rotações, translações e
escalonamentos, mas com diferenças estruturais. O
classificador conseguiu taxas de acerto superiores a 83% em
ambos os conjuntos de objetos. O sistema SimpleNet também
mostrou-se eficiente na diferenciação de imagens
semelhantes (cartões telefônicos e radiografias de
pulmões), obtendo taxas de acerto superiores a 80%. O
desenvolvimento destes sistemas demonstrou a viabilidade da
aplicação de redes neurais na classificação de objetos bi-
dimensionais. Devido ao grande interesse na utilização de
sistemas de Visão em aplicações de tempo real, mediu-se o
tempo gasto nos processos de reconhecimento. Desta forma
foram detectados os garagalos dos sistemas, facilitando
assim sua otimização. / [en] This work investigates the use of Artificial Neural
Networks in the recognition of bi-dimensional images. The
work was divided in four main parts: a survey on the
importance of Computational Vision and on the benefits of
the application of intelligent techniques in the fiels; a
survey on the structure of image recognition systems found
in the literature; the development of two image recognition
systems based on neural networks; and an analysis of the
performance of the developed systems.
Computational Vision has benefited from the main
Computational Intelligence techniques (neural networks,
genetic algoritms and fuzzy logic) to implement image
recognition systems. In this work, the usage of different
Kinds of neural networks in image classification was
studied: Back-Propagation, Competitive, RBF and
Hierarchical. Besiades that, a survey on the fields of
application of Computational Vision was made.
The basic structure is typically composed of three modules:
a pre-processor, a characteristics extractor and a
classifier.
In this work, two image recognition systems, called Xvision
and SimpleNet, were developed. The XVision system follows
the structure described above, while the SimpleNet system
performs the classification using the information present
in the raw picture.
The pre-processing module of the Xvision system executes a
series of transforms over the image, extracting its
essential characteristics so that an invariant
representation of the image can be obtained. This pre-
processor is based on a previous work in the fiels of
Signal Processing.
The characteristcs extractor aims to detect the most
relevant information present in the image representation
obtained after the previous step. Two kinds of extractors
were investigated: one based on statistical tecniques
(applyng the Fisher`s discriminant) and another based on
intelligent techniques (applyng genetic algorithms).
The classification module was implementede through several
Kinds of neural networks: Back-Propagation, Competitive,
RBF and Hierarchical.
The pre-processing of the SimpleNet system simply reduces
the image`s dimensions. Since the image`s pixels are used
for the classification process, no characteristics
extractor module was implemented. In the classification
module, Back-Propagation and Competitive neural networks
were employed.
The Xvision system yielded promising results for two sets
of objects: the first one composed of mechanical parts and
the second one composed of trivial objects. The samples
used during the tests presented different characteristics
from those samples used during the training process - not
only rotated, translated and scaled, but also with
structural differences. The classifier obtained a hit ratio
above 83% with both sets. The SimpleNet system also showed
a good performance in the differentiation of similar
objects (telephone cards and X-rays of lungs), achieving
hit ratios of more than 80%.
The development of both systems demonstrated the viability
of the use of neural networks in the classification of bi-
dimensional objects. Due to the interest of applying Vision
systems in real-time, the time spent in the recognition
process was measured. This allowed the detection of the
systems` bottlenecks, making their optimization easier.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:8636
Date05 July 2006
CreatorsGUY PERELMUTER
ContributorsMARLEY MARIA BERNARDES REBUZZI VELLASCO
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.003 seconds